10 Axiom system for propositional logic

Resolution provides a procedure for verifying contradictions, and hence, tautologies. For Math-
ematical logic, a ‘generating’ view is taken rather than a verification: axioms are supplied, and
tautologies are verified by being deduced from the axioms. The system is due to Frege (I think):
anyway, it is the system covered in Mendelson’s book.

A logical system involves formulae, axioms, and rules of inference. Resolution is an example
of a rule of inference. Our system for propositonal logic uses modus ponens, which is a restricted
form of resolution.

Formulae are built using the two connectives — and == . Since X v Y is equivalent
to (—X) = Y, and X A Y is equivalent to =(X = —Y), any CNF can easily be
translated into a formula using only these connectives. Therefore the two connectives =, = |
are adequate for expressing all truth-functions.

There are three groups of logical axioms in our system. Each group represents infinitely
many axioms, since A, B, and C can be any formula:

) A = (B = A)

) (A = (B = () = (4 = B) = (A = ()
M1 ((=B) = (=4)) = ((-=B) = A) — B)
(10.1) Lemma Every logical aziom is a tautology.

Sketch proof. Easily proved by analysing the truth-tables of each logical axiom. |
There is one rule of inference:

Modus ponensﬂ From A and A = B, deduce B.
Systems may also include some extra proper azioms.

Supposing that I is the set of proper axioms, possibly empty, and Z a formula, a deduction
or proof of Z from I in the system is a finite sequence of formulae with justifications, where
the justification of each step A is that either

e A is a logical axiom,
e A is a proper axiom, i.e., A€ ' or
e A is deduced from two earlier formulae B and B = A by Modus Ponens.
and Z occurs in one of the steps of the proof. We write
I'Z or I'kgc 2
when Z can be deduced from I', and
—Z or FscZ

when ¥ — Z. In this case, i.e, I' = ¢J, Z is called a theorem (of SC).

IThis is a restricted kind of resolution.



(10.2) Definition A system of the above kind, with logical axioms I-I11I and Modus ponens,
15 called a sentential calculus. When there are no proper azxioms, we call the system a pure
sentential calculus.

(10.3) Lemma Suppose I' - Z, a particular proof being given. Let I be an intepretation of
all the Boolean variables occurring in I' and in the formulae occurring in the proof. Suppose
I(A) =1 forall AeT.
Then I(Z) = 1. In particular if + Z then Z is a tautology.

Proof. (By induction on the length of the given proof.) If Z is a proper axiom then
I(Z) = 1. If Z is a logical axiom then it is a tautology (this is easily checked with truth-
tables), so I(Z) = 1. If Z is deduced from earlier formulae A and A = Z, then I(A) = 1 and
I(A = Z)=1. Now, if Z were false under I, then since A is true, A = Z would be false
(from the truth-table). It isn’t: [(A = Z) = 1. Therefore I(Z) =1 also. |}

Now to prove our first theorem within the system.
(10.4) Lemma +— A= A.

Proof. The following is a proof of A =— A.

A= (A=A)=A)= (A= (A= A)) = (A= A)) (Axioms II).
A= (A= A) = A) (Axioms I).

(A= (A= A)) = (A= A)) (1,2, MP).

(A= (A= A)) (Axioms I).

A= A (34, MP). |
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(10.5) Corollary (-4 = A) A

Proof.

. (mA) = —A Lemma [[0.4]

. ((FA) = —A) = (((mA) = A) = A) (Axiom III)
. ((mA) = A) = A (1,2,MP)

(—A) = A (Given)

A (43MP). 1

(10.6)  In mathematical proofs, in order to prove A = B, it is customary to assume A
and deduce B. In fact, this is almost the invariable practice. The following simple yet very
important result shows that the practice is a very useful short-cut, and is correct.

Note that the ‘opposite’ of the Deduction Theorem is true, and easy to prove.
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(10.7) Lemma [fT'— A= B then ' A+~ B. |}

(10.8) Theorem (the Deduction Theorem for Sentential Calculus).
IfT A+ B thenl' - A= B.



Proof. By induction on the length of proofs. In proofs of length 1 either (i) B = A, (ii)
B el or (ili) B is a logical axiom.

In case (i) I' - A = B by Lemma [[0.4]
In cases (ii) and (iii)), '+ B, and ' = B = (A = B) (Axioms I), so I' - A = B by MP.

For the inductive step, suppose that B is the formula given in the n + 1st step of a proof.
If B is justified under cases (i)—(iii) above, the same arguments apply. Otherwise (iv) B arises
from using MP from two previous formulae in the proof, so I' = C' and I' - C' = B in a proof
of length < n. By induction

'-A= (C= B) and '-A=C.

Since

'-(A=(C=DB))=(A=C)= (A= D)
(Axioms II), I' - A = B by two applications of MP. This completes the inductive step. |

(10.9) Corollary Implication is transitive, i.e.,
A— B B—= (CrHA = C

Proof.
1. A hypothesis
2. A = B given
3. B 12MP
4. B = ( given
5. C 3,4,MP.
Thus, A, A = B,B = (C I C, so by the Deduction Theorem, A = B,B = (C'
A= C. ]

The goal of this section is to prove that Sentential Calculus is sound and complete in the
following sense.

(10.10) Theorem A formula S is a tautology if and only if - S.

This will be proved by connecting SC with resolution proofs. The main point is that
resolution can be imitated in SC.

(10.11) Lemma ——A+ A

Proof. 1. =——A given

-A = ——=A1, 1, MP

—-A = —A Lemma [I0.4]

(A = ———A) = (A = —-A) = A) 1l
A 23,4, MP twice. |}

CUk L

(10.12) Lemma (counterpositive). (A — B) - (—-B) — (—A4)



Proof. It is enough to prove A = B,—B | —A.
(——A) = A (Lemma [I0.TT])

A = B given

(——A) = B 1,2, Transitivity

— B given

(——A) = —BI14MP

—A 53111, MP twice. |}
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(10.13) Lemma A ——A

Proof: exercise.

(10.14) Definition Two formulae B and B’ in SC are equivalent in SC if B + B’ and B’ + B.

(10.15) Corollary (subformula substitution)E Suppose A, B, B’ are formulae where B, B’
are equivalent in SC. Let A" be the formula obtained from A by replacing some occurrences of

B in A by B'. Not all occurrences of B need be replaced by B'. Then A and A’ are equivalent
in SC.

Sketch proof. The proof is by induction on the length of A. If A is a boolean variable
then if B is the same variable then A = B and A’ = A or A’ = B’. The result holds in this
case.

If Ais —C then A’ is —C" where by induction we can assume that C' and C” are equivalent
in SC. Thus

CrC": +C = C": +(=C") = (=0)
by Lemma [[0.12 By symmetry, - (—=C") = (=C).

If Ais (C = D), then A’ is (" = D'). By induction, assuming A, ¢’ = (' and
D = D', so by transitivity, ' = D’: A A’. Similarly A’ — A. |}

(10.16) Definition We introduce v, A, and <= and define them in terms of — and =
as follows.

(Av B) =(definition) (—A) = B
(A A B) =(definition) (—=((—A) v (—B)))
(A < B) =(definition) (A= B) A (B = A)

(10.17) Lemma (i) B~ Av B

(i) v is commutative, i.e., Av B+ B v A
(i) A Av B

(iv) ANBEF A

(v) ANB+ B

(vi) A, B-AAD

2This had been accidentally deleted.



(vil) A s associative

(vill) v distributes over A

(ix) A is commutative and v is associative
(x) A distributes over v

Proof. (i) B+ A v B from I and MP.
(ii) Suppose A v B, ie., (—A) — B.
(—A) = B given
(—=B) = ——A (Lemma [[0.12)
(—-B) = A (2, Lemma [[0.TT] transitivity)
e. B v A as required.

(iii) Immediate from (i) and (ii).

(iv) Suppose A A B, ie., =((—A) v (—B)).
1. (mA) = ((—A) v (—=B)) from (iii)).
2. (=((—A) v (=B))) = ——A (1, Lemma [I0.12), i.e.
AAnB = ——A. 3. =——A = A (Lemma [I0.1T]).
By transitivity, A A B == A, which is equivalent to (iv).

(v) Similarly, using commutativity of v.
(vi) Let X be =——A = —B, so —X is identical to A A B.

1. A (given)
2. X (hyp)
3. =——A (1, Lemma [I0.13))
4. —B (3.2,MP)
5. - X =— —B (14,DT)
6
7
8
9

1.
2.
3.
i.

. =—B = —X (Lemma [[0.12)
. B (given)

. =—B (7, Lemma [I0.13))
. =X (8,6,MP) as required.

(vii — ix): exercises.
(x) can be deduced from (viii), proof omitted. |}

(10.18) Lemma (resolution valid in SC). L v A,(=L) v B+ Av B. (Here A or B can
be empty, but not both).

Proof. 1. Lv A+ L v Av B Above lemmas.

L v A (Given.)

Lv Av B (1,2,MP).

(—=L) = A v B (Equivalent)

—(A v B) = L Counterpositive, equivalents

(—L) v B (given). By steps similar to 1...5,

—~(Av B) = L.

(«(AvB) = L = —(AvB) = L) = (Av B) Axiom IIL
Av B (5, x,y, MP twice. |}
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(10.19) Lemma Let A be a formula of SC. One can convert A to a provably equivalent CNF.

Proof. It is assumed that A uses only the connectives —, =.
We first make substitutions which convert A into a genuine CNF G, in which —, v, A are
primitive connectives, rather than one in which v, A are expressed in terms of —, =.

e First, convert X = Y to (—X) v Y throughout. This yields a formula using only —, v.

e Then replace formulae —=(X v Y) by (=X) A =Y, and —=(X AY) by (—X) v =Y. Also
replace ——X by X throughout.

When no further alterations of this kind are possible, we have a formula which consists
of v, A, and literals.

e Replace subformulac X v (Y A Z) by (X vY)A (X v Z),and (X vY) A Z) by (X v
)~ (Y v Z).

This should result in a formula in CNF. One can get it into a more regular form by replacing
(XVvY)vZ)by X v (Y vZ),and (X AY)AZby X A (Y A Z).
Then G is a CNF where the conjunction is arranged as

CiA(Con...nChy)
and every disjunction has the form
Liv (Lyv...v Ly).

Finally, rewrite every occurrence of A, v in terms of —, = . This gives a correct formula
of SC, which is provably equivalent using Lemmas [0.17 and T0.I5 |

(10.20) Corollary If X, a formula of SC, is a tautology, then it is a theorem of SC.
Proof. By applying valid transformations to —X, we can get a CNF Z’, where
Z' is provably equivalent to =X in SC

7' has the form
Cl VAN Cg VAN .CN

(Parentheses are unnecessary because A is associative.) From this, the separate clauses C, Cs, ..., Cy
can be deduced in SC (Lemma [[0.I7 (iv),(v)).

Since resolution is valid in SC (Lemma [[0.I8)), every step in a resolution refutation, except
the last, can be simulated in SC. The last step can’t be simulated, since [] is outside the scope
of SC; so the last step would be to infer [J from L and L where L is a literal.

Since L and L can be derived from Ci, ..., Cy by repeated resolution, they can be derived
in SC:

Cl,...,CNI—L and Cl,...,CNI—_'L

for some literal L. Therefore
7'~ L



SO
-7 — L

by the Deduction Theorem. Since Z’ and —X are equivalent,
F—-X = L.

Similarly
=X =— —L.

Using
(=X =—-L)—> (-X > L)) = X,

and MP twice, we have completed a proof of X in SC. |}
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