10 Axiom system for propositional logic

Resolution provides a procedure for verifying contradictions, and hence, tautologies. For Mathematical logic, a 'generating' view is taken rather than a verification: axioms are supplied, and tautologies are verified by being deduced from the axioms. The system is due to Frege (I think): anyway, it is the system covered in Mendelson's book.

A logical system involves formulae, axioms, and rules of inference. Resolution is an example of a rule of inference. Our system for propositonal logic uses modus ponens, which is a restricted form of resolution.

Formulae are built using the two connectives \neg and \implies . Since $X \lor Y$ is equivalent to $(\neg X) \implies Y$, and $X \land Y$ is equivalent to $\neg(X \implies \neg Y)$, any CNF can easily be translated into a formula using only these connectives. Therefore the two connectives \neg, \implies , are adequate for expressing all truth-functions.

There are three groups of *logical axioms* in our system. Each group represents infinitely many axioms, since A, B, and C can be any formula:

(I) $A \implies (B \implies A)$

 $(\mathrm{II}) \ (A \implies (B \implies C)) \implies ((A \implies B) \implies (A \implies C))$

$$(\text{III}) \ ((\neg B) \implies (\neg A)) \implies (((\neg B) \implies A) \implies B)$$

(10.1) Lemma Every logical axiom is a tautology.

Sketch proof. Easily proved by analysing the truth-tables of each logical axiom. There is one rule of inference:

Modus ponens.¹ From A and $A \implies B$, deduce B. Systems may also include some extra *proper axioms*.

Supposing that Γ is the set of proper axioms, possibly empty, and Z a formula, a *deduction* or proof of Z from Γ in the system is a finite sequence of formulae with justifications, where the justification of each step A is that either

- A is a logical axiom,
- A is a proper axiom, i.e., $A \in \Gamma$, or
- A is deduced from two earlier formulae B and $B \Rightarrow A$ by Modus Ponens.

and Z occurs in one of the steps of the proof. We write

$$\Gamma \vdash Z$$
 or $\Gamma \vdash_{\mathrm{SC}} Z$

when Z can be deduced from Γ , and

$$\vdash Z$$
 or $\vdash_{\mathrm{SC}} Z$

when $\emptyset \vdash Z$. In this case, i.e, $\Gamma = \emptyset$, Z is called a *theorem* (of SC).

¹This is a restricted kind of resolution.

(10.2) Definition A system of the above kind, with logical axioms I-III and Modus ponens, is called a sentential calculus. When there are no proper axioms, we call the system a pure sentential calculus.

(10.3) Lemma Suppose $\Gamma \vdash Z$, a particular proof being given. Let I be an interpretation of all the Boolean variables occurring in Γ and in the formulae occurring in the proof. Suppose

 $I(A) = 1 \text{ for all } A \in \Gamma.$

Then I(Z) = 1. In particular if $\vdash Z$ then Z is a tautology.

Proof. (By induction on the length of the given proof.) If Z is a proper axiom then I(Z) = 1. If Z is a logical axiom then it is a tautology (this is easily checked with truth-tables), so I(Z) = 1. If Z is deduced from earlier formulae A and $A \Rightarrow Z$, then I(A) = 1 and $I(A \implies Z) = 1$. Now, if Z were false under I, then since A is true, $A \implies Z$ would be false (from the truth-table). It isn't: $I(A \implies Z) = 1$. Therefore I(Z) = 1 also.

Now to prove our first theorem within the system.

(10.4) Lemma $\vdash A \Rightarrow A$.

Proof. The following is a proof of $A \implies A$. 1. $(A \Rightarrow ((A \Rightarrow A) \Rightarrow A)) \Rightarrow ((A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A))$ (Axioms II). 2. $A \Rightarrow ((A \Rightarrow A) \Rightarrow A)$ (Axioms I). 3. $((A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A))$ (1,2, MP). 4. $(A \Rightarrow (A \Rightarrow A))$ (Axioms I). 5. $A \Rightarrow A$ (3,4, MP).

(10.5) Corollary $(\neg A \implies A) \vdash A$

Proof. 1. $(\neg A) \implies \neg A$ Lemma 10.4 2. $((\neg A) \implies \neg A) \implies (((\neg A) \implies A) \implies A)$ (Axiom III) 3. $((\neg A) \implies A) \implies A$ (1,2,MP) 4. $(\neg A) \implies A$ (Given) 5. A (4,3,MP).

(10.6) In mathematical proofs, in order to prove $A \Rightarrow B$, it is customary to assume A and deduce B. In fact, this is almost the invariable practice. The following simple yet very important result shows that the practice is a very useful short-cut, and is correct.

Note that the 'opposite' of the Deduction Theorem is true, and easy to prove.

(10.7) Lemma If $\Gamma \vdash A \Rightarrow B$ then $\Gamma, A \vdash B$.

(10.8) Theorem (the Deduction Theorem for Sentential Calculus). If $\Gamma, A \vdash B$ then $\Gamma \vdash A \Rightarrow B$. **Proof.** By induction on the length of proofs. In proofs of length 1 either (i) B = A, (ii) $B \in \Gamma$, or (iii) B is a logical axiom.

In case (i) $\Gamma \vdash A \Rightarrow B$ by Lemma 10.4.

In cases (ii) and (iii), $\Gamma \vdash B$, and $\Gamma \vdash B \Rightarrow (A \Rightarrow B)$ (Axioms I), so $\Gamma \vdash A \Rightarrow B$ by MP.

For the inductive step, suppose that B is the formula given in the n + 1st step of a proof. If B is justified under cases (i)–(iii) above, the same arguments apply. Otherwise (iv) B arises from using MP from two previous formulae in the proof, so $\Gamma \vdash C$ and $\Gamma \vdash C \Rightarrow B$ in a proof of length $\leq n$. By induction

$$\Gamma \vdash A \Rightarrow (C \Rightarrow B)$$
 and $\Gamma \vdash A \Rightarrow C$.

Since

$$\Gamma \vdash (A \Rightarrow (C \Rightarrow B)) \Rightarrow (A \Rightarrow C) \Rightarrow (A \Rightarrow B)$$

(Axioms II), $\Gamma \vdash A \Rightarrow B$ by two applications of MP. This completes the inductive step.

(10.9) Corollary Implication is transitive, i.e.,

$$A \implies B, B \implies C \vdash A \implies C$$

Proof.

- 1. A hypothesis
- 2. $A \implies B$ given
- 3. B 1,2,MP
- 4. $B \implies C$ given
- 5. C 3,4,MP.

Thus, $A, A \implies B, B \implies C \vdash C$, so by the Deduction Theorem, $A \implies B, B \implies C \vdash A \implies C$.

The goal of this section is to prove that Sentential Calculus is sound and complete in the following sense.

(10.10) Theorem A formula S is a tautology if and only if $\vdash S$.

This will be proved by connecting SC with resolution proofs. The main point is that resolution can be imitated in SC.

(10.11) Lemma $\neg \neg A \vdash A$

Proof. 1. $\neg \neg A$ given 2. $\neg A \implies \neg \neg A$ 1, I, MP 3. $\neg A \implies \neg A$ Lemma 10.4 4. $(\neg A \implies \neg \neg A) \implies ((\neg A \implies \neg A) \implies A)$ III 5. A 2,3,4, MP twice.

(10.12) Lemma (counterpositive). $(A \implies B) \vdash (\neg B) \implies (\neg A)$

Proof. It is enough to prove $A \implies B, \neg B \vdash \neg A$. 1. $(\neg \neg A) \implies A$ (Lemma 10.11) 2. $A \implies B$ given 3. $(\neg \neg A) \implies B$ 1,2,Transitivity 4. $\neg B$ given 5. $(\neg \neg A) \implies \neg B$ I,4,MP 6. $\neg A$ 5,3,III, MP twice.

(10.13) Lemma $A \vdash \neg \neg A$

Proof: exercise.

(10.14) Definition Two formulae B and B' in SC are equivalent in SC if $B \vdash B'$ and $B' \vdash B$.

(10.15) Corollary (subformula substitution).² Suppose A, B, B' are formulae where B, B' are equivalent in SC. Let A' be the formula obtained from A by replacing some occurrences of B in A by B'. Not all occurrences of B need be replaced by B'. Then A and A' are equivalent in SC.

Sketch proof. The proof is by induction on the length of A. If A is a boolean variable then if B is the same variable then A = B and A' = A or A' = B'. The result holds in this case.

If A is $\neg C$ then A' is $\neg C'$ where by induction we can assume that C and C' are equivalent in SC. Thus

$$C \vdash C' : \quad \vdash C \implies C' : \quad \vdash (\neg C') \implies (\neg C)$$

by Lemma 10.12. By symmetry, $\vdash (\neg C') \implies (\neg C)$.

If A is $(C \implies D)$, then A' is $(C' \implies D')$. By induction, assuming A, $C' \implies C$ and $D \implies D'$, so by transitivity, $C' \implies D'$: $A \vdash A'$. Similarly $A' \vdash A$.

(10.16) Definition We introduce \lor , \land , and \iff and define them in terms of \neg and \implies as follows.

 $(A \lor B) = (\text{definition}) \quad (\neg A) \implies B$ $(A \land B) = (\text{definition}) \quad (\neg((\neg A) \lor (\neg B)))$ $(A \iff B) = (\text{definition}) \quad (A \Rightarrow B) \land (B \Rightarrow A)$

(10.17) Lemma (i) $B \vdash A \lor B$ (ii) \lor is commutative, i.e., $A \lor B \vdash B \lor A$ (iii) $A \vdash A \lor B$ (iv) $A \land B \vdash A$ (v) $A \land B \vdash B$ (vi) $A, B \vdash A \land B$

²This had been accidentally deleted.

(vii) ∧ is associative
(viii) ∨ distributes over ∧
(ix) ∧ is commutative and ∨ is associative
(x) ∧ distributes over ∨

Proof. (i) $B \vdash A \lor B$ from I and MP. (ii) Suppose $A \lor B$, i.e., $(\neg A) \implies B$. 1. $(\neg A) \implies B$ given 2. $(\neg B) \implies \neg \neg A$ (Lemma 10.12) 3. $(\neg B) \implies A$ (2, Lemma 10.11, transitivity) i.e. $B \lor A$ as required. (iii) Immediate from (i) and (ii). (iv) Suppose $A \wedge B$, i.e., $\neg((\neg A) \lor (\neg B))$. 1. $(\neg A) \implies ((\neg A) \lor (\neg B))$ from (iii)). 2. $(\neg((\neg A) \lor (\neg B))) \implies \neg \neg A$ (1, Lemma 10.12), i.e. $A \wedge B \implies \neg \neg A. 3. \neg \neg A \implies A$ (Lemma 10.11). By transitivity, $A \wedge B \implies A$, which is equivalent to (iv). (v) Similarly, using commutativity of \lor . (vi) Let X be $\neg \neg A \implies \neg B$, so $\neg X$ is identical to $A \land B$. 1. A (given) 2. X (hyp) 3. $\neg \neg A$ (1, Lemma 10.13) 4. $\neg B$ (3,2,MP) 5. $\vdash X \implies \neg B (1-4, DT)$ 6. $\neg \neg B \implies \neg X$ (Lemma 10.12) 7. B (given) 8. $\neg \neg B$ (7, Lemma 10.13) 9. $\neg X$ (8,6,MP) as required.

(vii - ix): exercises.

(x) can be deduced from (viii), proof omitted.

(10.18) Lemma (resolution valid in SC). $L \lor A, (\neg L) \lor B \vdash A \lor B$. (Here A or B can be empty, but not both).

Proof. 1. $L \lor A \vdash L \lor A \lor B$ Above lemmas. 2. $L \lor A$ (Given.) 3. $L \lor A \lor B$ (1,2,MP). 4. $(\neg L) \Longrightarrow A \lor B$ (Equivalent) 5. $\neg (A \lor B) \Longrightarrow L$ Counterpositive, equivalents 6. $(\neg L) \lor B$ (given). By steps similar to 1...5, x. $\neg (A \lor B) \Longrightarrow \overline{L}$. y. $(\neg (A \lor B) \Longrightarrow \overline{L} \Longrightarrow \neg (A \lor B) \Longrightarrow L) \Longrightarrow (A \lor B)$ Axiom III. z. $A \lor B$ (5, x, y, MP twice. (10.19) Lemma Let A be a formula of SC. One can convert A to a provably equivalent CNF.

Proof. It is assumed that A uses only the connectives \neg, \Rightarrow .

We first make substitutions which convert A into a genuine CNF G, in which \neg, \lor, \land are primitive connectives, rather than one in which \lor, \land are expressed in terms of \neg, \Rightarrow .

- First, convert $X \Rightarrow Y$ to $(\neg X) \lor Y$ throughout. This yields a formula using only \neg, \lor .
- Then replace formulae $\neg(X \lor Y)$ by $(\neg X) \land \neg Y$, and $\neg(X \land Y)$ by $(\neg X) \lor \neg Y$. Also replace $\neg \neg X$ by X throughout.

When no further alterations of this kind are possible, we have a formula which consists of \lor , \land , and literals.

• Replace subformulae $X \lor (Y \land Z)$ by $(X \lor Y) \land (X \lor Z)$, and $(X \lor Y) \land Z)$ by $(X \lor Z) \land (Y \lor Z)$.

This should result in a formula in CNF. One can get it into a more regular form by replacing $(X \lor Y) \lor Z$ by $X \lor (Y \lor Z)$, and $(X \land Y) \land Z$ by $X \land (Y \land Z)$.

Then G is a CNF where the conjunction is arranged as

$$C_1 \wedge (C_2 \wedge \ldots \wedge C_N)$$

and every disjunction has the form

$$L_1 \vee (L_2 \vee \ldots \vee L_k).$$

Finally, rewrite every occurrence of \land, \lor in terms of \neg, \Longrightarrow . This gives a correct formula of SC, which is provably equivalent using Lemmas 10.17 and 10.15.

(10.20) Corollary If X, a formula of SC, is a tautology, then it is a theorem of SC.

Proof. By applying valid transformations to $\neg X$, we can get a CNF Z', where

Z' is provably equivalent to $\neg X$ in SC

Z' has the form

$$C_1 \wedge C_2 \wedge \ldots C_N$$

(Parentheses are unnecessary because \wedge is associative.) From this, the separate clauses C_1, C_2, \ldots, C_N can be deduced in SC (Lemma 10.17 (iv),(v)).

Since resolution is valid in SC (Lemma 10.18), every step in a resolution refutation, except the last, can be simulated in SC. The last step can't be simulated, since \Box is outside the scope of SC; so the last step would be to infer \Box from L and \overline{L} where L is a literal.

Since L and \overline{L} can be derived from C_1, \ldots, C_N by repeated resolution, they can be derived in SC:

$$C_1, \ldots, C_N \vdash L$$
 and $C_1, \ldots, C_N \vdash \neg L$

for some literal L. Therefore

$$Z' \vdash L$$

 \mathbf{SO}

$$\vdash Z' \implies L$$

by the Deduction Theorem. Since Z' and $\neg X$ are equivalent,

$$\vdash \neg X \implies L.$$

Similarly

$$\vdash \neg X \implies \neg L.$$

Using

$$((\neg X \Rightarrow \neg L) \to (\neg X \to L)) \implies X,$$

and MP twice, we have completed a proof of X in SC.