
10 Axiom system for propositional logic

Resolution provides a procedure for verifying contradictions, and hence, tautologies. For Math-
ematical logic, a ‘generating’ view is taken rather than a verification: axioms are supplied, and
tautologies are verified by being deduced from the axioms. The system is due to Frege (I think):
anyway, it is the system covered in Mendelson’s book.

A logical system involves formulae, axioms, and rules of inference. Resolution is an example
of a rule of inference. Our system for propositonal logic uses modus ponens, which is a restricted
form of resolution.

Formulae are built using the two connectives  and ùñ . Since X _ Y is equivalent
to p Xq ùñ Y , and X ^ Y is equivalent to  pX ùñ  Y q, any CNF can easily be
translated into a formula using only these connectives. Therefore the two connectives  , ùñ ,
are adequate for expressing all truth-functions.

There are three groups of logical axioms in our system. Each group represents infinitely
many axioms, since A,B, and C can be any formula:

(I) A ùñ pB ùñ Aq

(II) pA ùñ pB ùñ Cqq ùñ ppA ùñ Bq ùñ pA ùñ Cqq

(III) pp Bq ùñ p Aqq ùñ ppp Bq ùñ Aq ùñ Bq

(10.1) Lemma Every logical axiom is a tautology.

Sketch proof. Easily proved by analysing the truth-tables of each logical axiom.
There is one rule of inference:

Modus ponens.1 From A and A ùñ B, deduce B.
Systems may also include some extra proper axioms.

Supposing that Γ is the set of proper axioms, possibly empty, and Z a formula, a deduction
or proof of Z from Γ in the system is a finite sequence of formulae with justifications, where
the justification of each step A is that either

• A is a logical axiom,

• A is a proper axiom, i.e., A P Γ, or

• A is deduced from two earlier formulae B and B ñ A by Modus Ponens.

and Z occurs in one of the steps of the proof. We write

Γ $ Z or Γ $SC Z

when Z can be deduced from Γ, and

$ Z or $SC Z

when H $ Z. In this case, i.e, Γ � H, Z is called a theorem (of SC).

1This is a restricted kind of resolution.
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(10.2) Definition A system of the above kind, with logical axioms I–III and Modus ponens,
is called a sentential calculus. When there are no proper axioms, we call the system a pure
sentential calculus.

(10.3) Lemma Suppose Γ $ Z, a particular proof being given. Let I be an intepretation of
all the Boolean variables occurring in Γ and in the formulae occurring in the proof. Suppose

IpAq � 1 for all A P Γ.
Then IpZq � 1. In particular if $ Z then Z is a tautology.

Proof. (By induction on the length of the given proof.) If Z is a proper axiom then
IpZq � 1. If Z is a logical axiom then it is a tautology (this is easily checked with truth-
tables), so IpZq � 1. If Z is deduced from earlier formulae A and Añ Z, then IpAq � 1 and
IpA ùñ Zq � 1. Now, if Z were false under I, then since A is true, A ùñ Z would be false
(from the truth-table). It isn’t: IpA ùñ Zq � 1. Therefore IpZq � 1 also.

Now to prove our first theorem within the system.

(10.4) Lemma $ Añ A.

Proof. The following is a proof of A ùñ A.
1. pAñ ppAñ Aq ñ Aqq ñ ppAñ pAñ Aqq ñ pAñ Aqq (Axioms II).
2. Añ ppAñ Aq ñ Aq (Axioms I).
3. ppAñ pAñ Aqq ñ pAñ Aqq (1,2, MP).
4. pAñ pAñ Aqq (Axioms I).
5. Añ A (3,4, MP).

(10.5) Corollary p A ùñ Aq $ A

Proof.
1. p Aq ùñ  A Lemma 10.4
2. pp Aq ùñ  Aq ùñ ppp Aq ùñ Aq ùñ Aq (Axiom III)
3. pp Aq ùñ Aq ùñ A (1,2,MP)
4. p Aq ùñ A (Given)
5. A (4,3,MP).

(10.6) In mathematical proofs, in order to prove A ñ B, it is customary to assume A

and deduce B. In fact, this is almost the invariable practice. The following simple yet very
important result shows that the practice is a very useful short-cut, and is correct.

Note that the ‘opposite’ of the Deduction Theorem is true, and easy to prove.

(10.7) Lemma If Γ $ Añ B then Γ, A $ B.

(10.8) Theorem (the Deduction Theorem for Sentential Calculus).
If Γ, A $ B then Γ $ Añ B.
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Proof. By induction on the length of proofs. In proofs of length 1 either (i) B � A, (ii)
B P Γ, or (iii) B is a logical axiom.

In case (i) Γ $ Añ B by Lemma 10.4.
In cases (ii) and (iii), Γ $ B, and Γ $ B ñ pAñ Bq (Axioms I), so Γ $ Añ B by MP.

For the inductive step, suppose that B is the formula given in the n � 1st step of a proof.
If B is justified under cases (i)–(iii) above, the same arguments apply. Otherwise (iv) B arises
from using MP from two previous formulae in the proof, so Γ $ C and Γ $ C ñ B in a proof
of length ¤ n. By induction

Γ $ Añ pC ñ Bq and Γ $ Añ C.

Since
Γ $ pAñ pC ñ Bqq ñ pAñ Cq ñ pAñ Bq

(Axioms II), Γ $ Añ B by two applications of MP. This completes the inductive step.

(10.9) Corollary Implication is transitive, i.e.,

A ùñ B,B ùñ C $ A ùñ C

Proof.
1. A hypothesis
2. A ùñ B given
3. B 1,2,MP
4. B ùñ C given
5. C 3,4,MP.

Thus, A,A ùñ B,B ùñ C $ C, so by the Deduction Theorem, A ùñ B,B ùñ C $

A ùñ C.

The goal of this section is to prove that Sentential Calculus is sound and complete in the
following sense.

(10.10) Theorem A formula S is a tautology if and only if $ S.

This will be proved by connecting SC with resolution proofs. The main point is that
resolution can be imitated in SC.

(10.11) Lemma   A $ A

Proof. 1.   A given
2.  A ùñ   A 1, I, MP
3.  A ùñ  A Lemma 10.4
4. p A ùñ   Aq ùñ pp A ùñ  Aq ùñ Aq III
5. A 2,3,4, MP twice.

(10.12) Lemma (counterpositive). pA ùñ Bq $ p Bq ùñ p Aq
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Proof. It is enough to prove A ùñ B, B $  A.
1. p  Aq ùñ A (Lemma 10.11)
2. A ùñ B given
3. p  Aq ùñ B 1,2,Transitivity
4.  B given
5. p  Aq ùñ  B I,4,MP
6.  A 5,3,III, MP twice.

(10.13) Lemma A $   A

Proof: exercise.

(10.14) Definition Two formulae B and B1 in SC are equivalent in SC if B $ B1 and B1

$ B.

(10.15) Corollary (subformula substitution).2 Suppose A,B,B1 are formulae where B,B1

are equivalent in SC. Let A1 be the formula obtained from A by replacing some occurrences of
B in A by B1. Not all occurrences of B need be replaced by B1. Then A and A1 are equivalent
in SC.

Sketch proof. The proof is by induction on the length of A. If A is a boolean variable
then if B is the same variable then A � B and A1

� A or A1

� B1. The result holds in this
case.

If A is  C then A1 is  C 1 where by induction we can assume that C and C 1 are equivalent
in SC. Thus

C $ C 1 : $ C ùñ C 1 : $ p C 1

q ùñ p Cq

by Lemma 10.12. By symmetry, $ p C 1

q ùñ p Cq.
If A is pC ùñ Dq, then A1 is pC 1

ùñ D1

q. By induction, assuming A, C 1

ùñ C and
D ùñ D1, so by transitivity, C 1

ùñ D1: A $ A1. Similarly A1

$ A.

(10.16) Definition We introduce _, ^, and ðñ and define them in terms of  and ùñ

as follows.

pA_Bq �(definition) p Aq ùñ B

pA^Bq �(definition) p pp Aq _ p Bqqq

pA ðñ Bq �(definition) pAñ Bq ^ pB ñ Aq

(10.17) Lemma (i) B $ A_B

(ii) _ is commutative, i.e., A_B $ B _ A

(iii) A $ A_B

(iv) A^B $ A

(v) A^B $ B

(vi) A,B $ A^B

2This had been accidentally deleted.
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(vii) ^ is associative
(viii) _ distributes over ^
(ix) ^ is commutative and _ is associative
(x) ^ distributes over _

Proof. (i) B $ A_B from I and MP.
(ii) Suppose A_B, i.e., p Aq ùñ B.

1. p Aq ùñ B given
2. p Bq ùñ   A (Lemma 10.12)
3. p Bq ùñ A (2, Lemma 10.11, transitivity)
i.e. B _ A as required.

(iii) Immediate from (i) and (ii).
(iv) Suppose A^B, i.e.,  pp Aq _ p Bqq.

1. p Aq ùñ pp Aq _ p Bqq from (iii)).
2. p pp Aq _ p Bqqq ùñ   A (1, Lemma 10.12), i.e.
A^B ùñ   A. 3.   A ùñ A (Lemma 10.11).
By transitivity, A^B ùñ A, which is equivalent to (iv).

(v) Similarly, using commutativity of _.
(vi) Let X be   A ùñ  B, so  X is identical to A^B.

1. A (given)
2. X (hyp)
3.   A (1, Lemma 10.13)
4.  B (3,2,MP)
5. $ X ùñ  B (1–4,DT)
6.   B ùñ  X (Lemma 10.12)
7. B (given)
8.   B (7, Lemma 10.13)
9.  X (8,6,MP) as required.

(vii – ix): exercises.
(x) can be deduced from (viii), proof omitted.

(10.18) Lemma (resolution valid in SC). L _ A, p Lq _ B $ A _ B. (Here A or B can
be empty, but not both).

Proof. 1. L_ A $ L_ A_B Above lemmas.
2. L_ A (Given.)
3. L_ A_B (1,2,MP).
4. p Lq ùñ A_B (Equivalent)
5.  pA_Bq ùñ L Counterpositive, equivalents
6. p Lq _B (given). By steps similar to 1. . . 5,
x.  pA_Bq ùñ L.
y. p pA_Bq ùñ L ùñ  pA_Bq ùñ Lq ùñ pA_Bq Axiom III.
z. A_B (5, x, y, MP twice.
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(10.19) Lemma Let A be a formula of SC. One can convert A to a provably equivalent CNF.

Proof. It is assumed that A uses only the connectives  ,ñ.
We first make substitutions which convert A into a genuine CNF G, in which  ,_,^ are

primitive connectives, rather than one in which _,^ are expressed in terms of  ,ñ.

• First, convert X ñ Y to p Xq _ Y throughout. This yields a formula using only  ,_.

• Then replace formulae  pX _ Y q by p Xq ^  Y , and  pX ^ Y q by p Xq _  Y . Also
replace   X by X throughout.

When no further alterations of this kind are possible, we have a formula which consists
of _,^, and literals.

• Replace subformulae X _ pY ^ Zq by pX _ Y q ^ pX _ Zq, and pX _ Y q ^ Zq by pX _

Zq ^ pY _ Zq.

This should result in a formula in CNF. One can get it into a more regular form by replacing
pX _ Y q _ Zq by X _ pY _ Zq, and pX ^ Y q ^ Z by X ^ pY ^ Zq.

Then G is a CNF where the conjunction is arranged as

C1 ^ pC2 ^ . . .^ CNq

and every disjunction has the form

L1 _ pL2 _ . . ._ Lkq.

Finally, rewrite every occurrence of ^,_ in terms of  , ùñ . This gives a correct formula
of SC, which is provably equivalent using Lemmas 10.17 and 10.15.

(10.20) Corollary If X, a formula of SC, is a tautology, then it is a theorem of SC.

Proof. By applying valid transformations to  X, we can get a CNF Z 1, where

Z 1 is provably equivalent to  X in SC

Z 1 has the form
C1 ^ C2 ^ . . . CN

(Parentheses are unnecessary because^ is associative.) From this, the separate clauses C1, C2, . . . , CN

can be deduced in SC (Lemma 10.17 (iv),(v)).
Since resolution is valid in SC (Lemma 10.18), every step in a resolution refutation, except

the last, can be simulated in SC. The last step can’t be simulated, since l is outside the scope
of SC; so the last step would be to infer l from L and L where L is a literal.

Since L and L can be derived from C1, . . . , CN by repeated resolution, they can be derived
in SC:

C1, . . . , CN $ L and C1, . . . , CN $  L

for some literal L. Therefore
Z 1

$ L
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so
$ Z 1

ùñ L

by the Deduction Theorem. Since Z 1 and  X are equivalent,

$  X ùñ L.

Similarly
$  X ùñ  L.

Using
pp X ñ  Lq Ñ p X Ñ Lqq ùñ X,

and MP twice, we have completed a proof of X in SC.
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