

20 Primitive recursive functions

Note: this section is about natural numbers without reference to Peano Arithmetic.

(20.1) Definition A primitive recursive function $f : \mathbb{N}^k \rightarrow \mathbb{N}$ is one which can be built from the following ‘primitive’ primitive recursive functions

- The Zero function $Z(x) \equiv 0$,
- The Successor function $S(x) = x + 1$, and
- The Projection functions $P_k^n : \mathbb{N}^n \rightarrow \mathbb{N}$ where $1 \leq k \leq n$: $(x_1, \dots, x_n) \mapsto x_k$

using the following operations

- *Substitution (aka composition):* Given a function $g : \mathbb{N}^k \rightarrow \mathbb{N}$ and k functions $h_j : \mathbb{N}^n \rightarrow \mathbb{N}$, $1 \leq j \leq k$, the composite function f can be introduced as:

$$f : \mathbb{N}^n \rightarrow \mathbb{N}; \quad \vec{x} \mapsto g(h_1(\vec{x}), \dots, h_k(\vec{x}))$$

- *Primitive recursion:* given a $n - 1$ -ary function g (if $n = 1$ then g is a constant) and a $n + 1$ -ary function h , the recursive formula defines $f : \mathbb{N}^n \rightarrow \mathbb{N}$ by primitive recursion from g and h : for any $\vec{x} \in \mathbb{N}^{n-1}$

$$\begin{aligned} f(\vec{x}, 0) &= g(\vec{x}) \\ f(\vec{x}, r + 1) &= h(\vec{x}, r, f(\vec{x}, r)) \end{aligned}$$

20.1 Examples

Skipped (more than 2 pages).

20.2 Length-lexicographical

What we need for the study of computability is a theory of bitstrings, not of numbers. But it should be enough that bitstrings and numbers are interchangeable. That is, we want a bijection

$$\{0, 1\}^* \rightarrow \mathbb{N}$$

The ‘face value’ of bitstrings is no use because it does not expect nor adjust to leading zeroes; also, because there is no number corresponding to the empty string λ .

We use $v(\alpha)$ for the face value of a string α , given that $\alpha \neq \lambda$.

The map chosen is to be called *length-lexicographical*. It defines the following ordering of bitstrings:

$$\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, \dots$$

so the length-lex encoding of a string α is

$$\begin{cases} 0 & \text{if } \alpha = \lambda \\ 2^{|\alpha|} - 1 + v(\alpha) & \text{otherwise} \end{cases}$$

where $v(\alpha)$ is the face-value of α as a binary string.

To reduce confusion, in the remainder of this section, Greek letters α, β, \dots will represent strings and x, y, z, \dots will represent natural numbers.

Of course $\alpha\beta$ is the concatenation of two strings and xy is the product of two numbers.

(20.2) Lemma *If α, β are nonempty then*

$$v(\alpha\beta) = 2^{|\beta|}v(\alpha) + v(\beta). \quad \blacksquare$$

The strings of length k , where $k > 0$, are those x such that

$$2^k - 1 \leq x \leq 2^{k+1} - 2$$

so

$$2^k \leq x + 1 \leq 2^{k+1} - 1$$

Note. All the functions mentioned in this subsection are primitive recursive. The proofs have been skipped.

Clearly, the length k of the string encoded by x is $\lfloor \log_2(x+1) \rfloor$, which is primitive recursive.

Now for concatenation: setting aside the case where α or β is empty, we have

$$(2^{|\alpha|} - 1 + v(\alpha), 2^{|\beta|} - 1 + v(\beta)) \mapsto 2^{|\alpha\beta|} - 1 + 2^{|\beta|}v(\alpha) + v(\beta).$$

We can untangle this as follows (x, y both nonzero).

Suppose $x = 2^{|\alpha|} - 1 + v(\alpha)$, $y = 2^{|\beta|} - 1 + v(\beta)$.

$$\begin{aligned} 2^{|\alpha|} - 1 + v(\alpha) &= x \\ v(\alpha) &\leq 2^{|\alpha|} - 1 \\ 2^{|\alpha|} + v(\alpha) &= x + 1 \\ 2^{|\alpha|} &\leq x + 1 \leq 2^{|\alpha|+1} - 1 \\ |\alpha| &= \lfloor (\log_2(x+1)) \rfloor \end{aligned}$$

and the last is a primitive recursive function of x .

But then $x - 2^{|\alpha|} + 1$, i.e., $v(\alpha)$, is primitive recursive, and we can then construct the map

$$(x, y) \mapsto 2^{|\alpha\beta|} - 1 + v(\alpha\beta)$$

as a primitive recursive function of x and y .

Clearly

- If $x = 0$ then $x \cdot y = y$;

- if $y = 0$ then $x \cdot y = x$.