

6 The Halting Problem

(6.1) Definition

- TM is the set of all bitstrings which are valid encodings of Turing machines.
- If y is a valid encoding of a Turing machine, then T_y is the machine it encodes.
- If M is a Turing machine and x an input string, then we write $M(x) \downarrow$ if, on input x , M eventually halts, and $M(x) \downarrow a$ if, on input x , M eventually halts with output a . Also, $M(x) \uparrow$ if M loops on input x .

The halting problem is:

Given a Turing machine M and an input string x , to determine if M halts on input x .

(6.2) Definition

$$\text{HALTING} = \{x \in \{0, 1\}^* : (\exists y \in \text{TM})(\exists z \in \{0, 1\}^*) (x = yz \wedge T_y(z) \downarrow)\}.$$

Q: What would be considered a solution to the Halting Problem? A: A Turing machine T such that, on input x ,

$$\begin{cases} T(x) \downarrow 1 & \text{if } x \in \text{HALTING} \\ T(x) \downarrow 0 & \text{if } x \notin \text{HALTING} \end{cases}$$

(6.3) Theorem Put this way, the halting problem has no solution.

Proof. Otherwise, one could construct a TM M which on input x ,

- M first ‘doubles’ its input to a string xx of twice the length, then applies the quintuples of T , i.e., decides whether xx is in HALTING ; then M takes the following action, which will lead to contradictory behaviour:
 - If $xx \in \text{HALTING}$, $M(x) \uparrow$, and
 - if $xx \notin \text{HALTING}$, $M(x) \downarrow$.

The rest of the argument is that M differs from every known Turing machine T_y . Or rather, it is impossible that $M = T_c$ where $c \in \text{TM}$. Let c be any string in TM .

Suppose $M(c) \uparrow$.

Then $cc \in \text{HALTING}$, so $cc = yz$ where $y \in \text{TM}$ and $T_y(z) \downarrow$. so cc can be factored as yz where $y \in \text{TM}$ and $T_y(z) \downarrow$.

By the unique factorisation property mentioned in the previous section, $y = c$ and $z = c$ and $T_c(c) \downarrow$. Since $M(c) \uparrow$, $M \neq T_c$.

Suppose $M(c) \downarrow$. Then $cc \notin \text{HALTING}$, so cc has no factorisation as yz where $y \in \text{TM}$ and $T_y(z) \downarrow$. In particular, cc is not such a factorisation: $T_c(c) \uparrow$ and $M(c) \downarrow$, so again $T_c \neq M$. ■

6.1 Diagonalisation

This is ‘diagonalisation’ invented by Cantor, who used it to show that for no set X can any map $f : X \rightarrow \mathcal{P}X$ (the power set) be surjective.

Similarly, \mathbb{R} is uncountable. It is enough to show that the set of real numbers $.a_1a_2\dots$ where $2 \leq a_j \leq 7$ for $j = 1, 2, \dots$, is uncountable.

Put it this way: for any list a_1, a_2, \dots of real numbers (in this range), each number having the expansion $a_{11}a_{12}a_{13}\dots$, there is a number b not in this list:

$$b_i = 9 - a_{ii}$$