24 Godel, Tarski, Church

The predicate H(m,n,r,s) is primitive recursive. It is just a primitive recursive function
producing truth-values (0/1).

It has the following meaning. Let y be the reverse length-lex encoding of m, a bitstring
which we assume belongs to TM (the other case is easy). This means that as a bitstring, y
encodes a Turing machine 7} as discussed early this term.

Let z be the reverse length-lex encoding of n.

Let w be the reverse length-lex encoding of r.

Let v be the reverse length-lex encoding of s.

The meaning of H(m, n,r, s) is that v is a halting computation of 7}, its initial configuration
is qoz, and its final configuration has the string w on the tape, surrounded by blanks with the
read /write head positioned at its left end. This is a witness to

Om(n) | 7.
There is a formula A(xq, z9, 23, x4) of PA such that for every m,n,r, s € N,
H(m,n,r,s) < tpa A(m,7,T,53).
Now define

S(xla X, $3) = 31'414(1'1, X2,X3, $4)

‘Obviously’ this is equivalent to ¢,,(n) | r but there are pitfalls, namely, that if S(m,n,7)
is provable, so there exists an x4 such that, etcetera, we are cannot assume x4 is a numeral s.

(24.1) Lemma For any m,n,r, if ¢(n) | r, then
Fpa S(m7 ﬁ7 F)

Proof. Let y be the reverse length-lex encoding of m, Since ¢,,(n), y € TM and there
exists an s € N such that the reverse encoding u of s encodes a halting computation of 7}, on
input z with output w where n and r encode z and w respectively.

That is, H(m,n,r,s).

Therefore F-pa A(T, 70, T,3).

Therefore Fpa Jz4A(T, 70, T, x4), i€,

FpaA S(m7 n, F) I
(24.2) Lemma If ¢,,,(n) | r then (i) S(m,m,7) is true in N, and for any ' + r, (ii) S(m,n,r’)
1s false in N.

Part (ii) is tricky — both are omitted. |}

Look very carefully at (ii). It is about truth in N, not about provability in PA.



24.1 First-order formulae and Turing machines

We have seen how to encode Turing machines and Turing machine computations as bitstrings
and, via length-lex, as numbers (in N).

In this section, theorem-proving is studied as a computational problem. This requires
an encoding of formulae and proofs as numbers too. To design such an encoding would be
straightforward but time-consuming.

We assume that that has been done, and we can freely discuss computational problems
about terms and formulae in PA, assuming they have been translated into problems about
numbers.

If A is a formula, then “A” is the encoding of A as a natural number.

(24.3) Proposition Assuming a reasonable encoding, the map
i om e “S(m,0,0)”
is recursive. |

(24.4) Theorem Assuming suitable encodings of the formulae of PA as natural numbers, the
set X' of theorems of Peano Arithmetic (encoded) and the set Y' of formulae which are false
in N (encoded) are recursively inseparable.

X/ — { “/477 . '_PA A}
Y'={“A”: not N = A}

Proof. First claim that the sets

X={meN: ¢,(0) |0} and
Y={meN: ¢,(0)]| 1}
are recursively inseparable: use the Fixed Point Theorem, as follows. If X < C'and Y nC = 7,

choose a € X and b e Y and let f map C to b and N\C to a; f has no fixed point so it is not
recursive and C' is not recursive.

If m e X, then
~pa S(m, 6, 6)
so “S(m,0,0)” € X'.
If meY, then
Pm(n) | 1

SO
not N = S(m,m,0)
(Lemma RZ2)): the encoding “S(m,7,0)” is in Y.
Therefore X € X’ and Y < Y’. Since X and Y are recursively inseparable, so are X’ and
Y. |
Remark. If X and Y are recursively inseparable sets, and they are disjoint, then neither X
nor Y is recursive.



(24.5) Corollary Tarksi’s Theorem. The set of formulae true in N is not recursive.

Proof. If the set of true formulae were recursive, then (it can be shown that) the set of
true closed formulae would be recursive. But a closed formula F' is true in N if and only if —F
is false in N, so the set of false formulae would be recursive; and it isn’'t. [

(24.6) Corollary The set of theorems of PA is not recursive. |}
(24.7) Proposition The set of theorems of PA is recursively enumerable.

(In other words there is a Turing machine which, given as input a formula A of PA, suitably
encoded, will halt if A is provable in PA and loop otherwise.) |}

(24.8) Corollary Godel-Rosser theorem. PA is incompletell

Proof. Otherwise, for every closed formula F', either F' or —F would be a theorem.

Set aside the possibility that PA is inconsistent, because then every formula is a theorem
and the set of theorems is recursive.

Construct a Turing machine which, given a closed formula F'; ‘simultaneously’ attempts to
prove F and to prove —F. Given that PA is complete and consistent, exactly one of these
attempts will succeed, so the Turing machine can decide whether or not F'is a theorem, and
halts on all inputs.

So the set of theorems would be recursive, which is false.

Therefore PA is incomplete. |

(24.9) Corollary Church’s Theorem. Let P be the predicate calculus (no proper axioms)
with the same language as Peano Arithmetic. Then the set of theorems of P is not recursive.

Sketch proof. There is a formula A(xy, z9, x3, z4) of PA such that for every m,n,r, s € N,
H(m,n,r,s) <= tps A(M,7,T,3).

This development used only a finite list @1, ..., Q) of proper axioms (in closed form) of PA.
Let K be the first-order theory with the language of PA, but whose only proper axioms are
Q1,...,Qk. It can be shown that m,n,r, s are in the relation H, i.e., H(m,n,r,s), if and only
if
-k A(m,T,T,5).
and if ¢,,(n) | r then
K S(m7 ﬁa F)
It will follow that the set X’ of theorems of K and the set Y’ of (closed) formulae false in

N are recursively inseparable, and that the set X’ is not recursive.
That is, the set of formulae, encoded,

{ccAn : l_K A}

1 Godel’s original theorem gave a closed formula with certain properties. This is stronger, but non-
constructive since it cannot say what the formula is.



is not recursive. But -x A if and only if

Q... Qr Fpc A

which is equivalent to
l_PC (Ql/\/\Qk)_’A

Therefore the set of encoded formulae of the restricted kind

(@i AQp) = A

which are theorems of PCH is not recursive, and it would follow that the set of theorems of PC
is not recursive. |

2 PC means predicate calculus, with no proper axioms. It depends uniquely on its language £(PC), which
is L(PA).
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