
24 Gödel, Tarski, Church

The predicate Hpm,n, r, sq is primitive recursive. It is just a primitive recursive function
producing truth-values (0/1).

It has the following meaning. Let y be the reverse length-lex encoding of m, a bitstring
which we assume belongs to TM (the other case is easy). This means that as a bitstring, y
encodes a Turing machine Ty as discussed early this term.

Let z be the reverse length-lex encoding of n.
Let w be the reverse length-lex encoding of r.
Let v be the reverse length-lex encoding of s.
The meaning of Hpm,n, r, sq is that v is a halting computation of Ty, its initial configuration

is q0z, and its final configuration has the string w on the tape, surrounded by blanks with the
read/write head positioned at its left end. This is a witness to

φmpnq Ó r.

There is a formula Apx1, x2, x3, x4q of PA such that for every m,n, r, s P N,

Hpm,n, r, sq ðñ $PA Apm,n, r, sq.

Now define

Spx1, x2, x3q � Dx4Apx1, x2, x3, x4q

‘Obviously’ this is equivalent to φmpnq Ó r but there are pitfalls, namely, that if Spm,n, rq

is provable, so there exists an x4 such that, etcetera, we are cannot assume x4 is a numeral s.

(24.1) Lemma For any m,n, r, if φmpnq Ó r, then

$PA Spm,n, rq.

Proof. Let y be the reverse length-lex encoding of m, Since φmpnq, y P TM and there
exists an s P N such that the reverse encoding u of s encodes a halting computation of Ty on
input z with output w where n and r encode z and w respectively.

That is, Hpm,n, r, sq.
Therefore $PA Apm,n, r, sq.
Therefore $PA Dx4Apm,n, r, x4q, i.e.,

$PA Spm,n, rq.

(24.2) Lemma If φmpnq Ó r then (i) Spm,n, rq is true in N, and for any r1

�� r, (ii) Spm,n, r1

q

is false in N.
Part (ii) is tricky — both are omitted.

Look very carefully at (ii). It is about truth in N, not about provability in PA.

1

24.1 First-order formulae and Turing machines

We have seen how to encode Turing machines and Turing machine computations as bitstrings
and, via length-lex, as numbers (in N).

In this section, theorem-proving is studied as a computational problem. This requires
an encoding of formulae and proofs as numbers too. To design such an encoding would be
straightforward but time-consuming.

We assume that that has been done, and we can freely discuss computational problems
about terms and formulae in PA, assuming they have been translated into problems about
numbers.

If A is a formula, then “A” is the encoding of A as a natural number.

(24.3) Proposition Assuming a reasonable encoding, the map

j : m ÞÑ “Spm, 0, 0q”

is recursive.

(24.4) Theorem Assuming suitable encodings of the formulae of PA as natural numbers, the
set X 1 of theorems of Peano Arithmetic (encoded) and the set Y 1 of formulae which are false
in N (encoded) are recursively inseparable.

X 1

� t“A” : $PA Au

Y 1

� t“A” : not N |ù Au.

Proof. First claim that the sets

X � tm P N : φmp0q Ó 0u and

Y � tm P N : φmp0q Ó 1u

are recursively inseparable: use the Fixed Point Theorem, as follows. If X � C and Y XC � H,
choose a P X and b P Y and let f map C to b and NzC to a; f has no fixed point so it is not
recursive and C is not recursive.

If m P X, then
$PA Spm, 0, 0q

so “Spm, 0, 0q” P X 1.
If m P Y , then

φmpnq Ó 1

so
not N |ù Spm,n, 0q

(Lemma 24.2): the encoding “Spm,n, 0q” is in Y 1.
Therefore X � X 1 and Y � Y 1. Since X and Y are recursively inseparable, so are X 1 and

Y 1.
Remark. If X and Y are recursively inseparable sets, and they are disjoint, then neither X

nor Y is recursive.

2

(24.5) Corollary Tarksi’s Theorem. The set of formulae true in N is not recursive.

Proof. If the set of true formulae were recursive, then (it can be shown that) the set of
true closed formulae would be recursive. But a closed formula F is true in N if and only if F
is false in N, so the set of false formulae would be recursive; and it isn’t.

(24.6) Corollary The set of theorems of PA is not recursive.

(24.7) Proposition The set of theorems of PA is recursively enumerable.

(In other words there is a Turing machine which, given as input a formula A of PA, suitably
encoded, will halt if A is provable in PA and loop otherwise.)

(24.8) Corollary Gödel-Rosser theorem. PA is incomplete.1

Proof. Otherwise, for every closed formula F , either F or F would be a theorem.
Set aside the possibility that PA is inconsistent, because then every formula is a theorem

and the set of theorems is recursive.
Construct a Turing machine which, given a closed formula F , ‘simultaneously’ attempts to

prove F and to prove F . Given that PA is complete and consistent, exactly one of these
attempts will succeed, so the Turing machine can decide whether or not F is a theorem, and
halts on all inputs.

So the set of theorems would be recursive, which is false.
Therefore PA is incomplete.

(24.9) Corollary Church’s Theorem. Let P be the predicate calculus (no proper axioms)
with the same language as Peano Arithmetic. Then the set of theorems of P is not recursive.

Sketch proof. There is a formula Apx1, x2, x3, x4q of PA such that for every m,n, r, s P N,

Hpm,n, r, sq ðñ $PA Apm,n, r, sq.

This development used only a finite list Q1, . . . , Qk of proper axioms (in closed form) of PA.
Let K be the first-order theory with the language of PA, but whose only proper axioms are
Q1, . . . , Qk. It can be shown that m,n, r, s are in the relation H, i.e., Hpm,n, r, sq, if and only
if

$K Apm,n, r, sq.

and if φmpnq Ó r then
$K Spm,n, rq

It will follow that the set X 1 of theorems of K and the set Y 1 of (closed) formulae false in
N are recursively inseparable, and that the set X 1 is not recursive.

That is, the set of formulae, encoded,

t“A” : $K Au

1 Gödel’s original theorem gave a closed formula with certain properties. This is stronger, but non-

constructive since it cannot say what the formula is.

3

is not recursive. But $K A if and only if

Q1, . . . , Qk $PC A

which is equivalent to
$PC pQ1 ^ . . .^Qkq Ñ A

Therefore the set of encoded formulae of the restricted kind

“pQ1 ^ . . .^Qkq Ñ A”

which are theorems of PC2 is not recursive, and it would follow that the set of theorems of PC
is not recursive.

2 PC means predicate calculus, with no proper axioms. It depends uniquely on its language LpPCq, which

is LpPAq.

4

	Gödel, Tarski, Church
	First-order formulae and Turing machines

