

11 First-order languages and theories

First-order theories have

- A *language*, namely, its *terms* and *formulae*.
- 5 schemes of logical axioms, including the three from SC.
- Two rules of inference.
- Proper axioms.

The ‘expressions,’ the language, are built from *constant letters*, *variables*, *function letters*, and *predicate letters*. Each function letter carries an ‘arity,’ a positive integer, the number of arguments it takes. Likewise a predicate letter.

Also, commas and parentheses, connectives \neg and \implies , and \forall .

Example. The variables are usually written as x_1, x_2, \dots Constant a_1 , two functions f_1 (binary) and f_2 (unary), and one predicate P_1 (binary).

The proper axioms are

$$\begin{aligned} & \forall x_1 P_1(f_1(x_1, a_1), x_1) \\ & \forall x_1 P_1(f_1(a_1, x_1), x_1) \\ & \forall x_1 P_1(f_1(f_2(x_1), x_1), a_1) \\ & \forall x_1 P_1(f_1(x_1, f_2(x_1)), a_1) \\ & \forall x_1 \forall x_2 \forall x_3 P_1(f_1(x_1, f_1(x_2, x_3)), f_1(f_1(x_1, x_2), x_3)) \end{aligned}$$

11.1 First-order languages

11.1.1 Terms

This resemble arithmetic expressions.

- Every constant is a term on its own. It has ‘depth’ zero.
- Every variable is a term on its own. It has ‘depth’ zero.
- If f is a function letter of arity k , and t_1, \dots, t_k are terms, then

$$f(t_1, \dots, t_k)$$

(an string of letters, variables, constants, commas, and parentheses) is a term, and the depth of this term is

$$1 + \max_{1 \leq j \leq k} \text{depth}(t_j)$$

11.1.2 Term substitution

Let t be a term, x_i a variable which may or may not occur in t . We write $t(x_i)$ to guide substitution.

Let u be any term.

$$t(u)$$

is the term obtained by substituting the term u for x_i , under the following recursive rules.

- Write $t(x_i)$ for the term t .
If t is a constant a_j , then $t(u) = a_j$, no change.
- if t is a variable x_j and $x_j \neq x_i$ then $t(u) = x_j$, no change.
- If t is x_i , then $t(u) = u$.
- If t is $f(s_1, \dots, s_k)$, arity k and k arguments s_j which are terms, then

$$t(u) = f(s_1(u), \dots, s_k(u))$$

11.1.3 Formulae

- An *atomic formula* is an expression

$$P(t_1, \dots, t_k)$$

where P is a predicate letter of arity k and t_1, \dots, t_k are terms. It has depth 0.

- If A is a formula, so is $(\neg A)$: its depth is $1 + \text{depth}(A)$.
- If A and B are formulae, so is $(A \Rightarrow B)$. Its depth is $1 + \max(\text{depth}(A), \text{depth}(B))$.
- If A is a formula, so is $(\forall x_i A)$: its depth is $1 + \text{depth}(A)$.

11.1.4 Other connectives

$(\exists x_1 A)$ is an abbreviation for

$$(\neg(\forall x_1(\neg A))).$$

Also, \vee, \wedge, \iff are introduced by definition, as in Propositional Logic.

11.1.5 Substitution in formulae

Let $A(x_i)$ be a formula, u a term.

$$A(u)$$

is defined by induction on depth as follows.

- Atomic formula $A = P(s_1, \dots, s_k)$; $A(\vec{t}) = P(s_1(u), \dots, s_k(u))$.
- Negation: $(\neg A)(u) = (\neg A(u))$.

- Implication: $(A \Rightarrow B)(u) = (A(u) \Rightarrow B(u))$.

- $(\forall x_j A)(\vec{t})$: if x_j is *not* x_i , then

$$(\forall x_j A)(u) = (\forall x_j A(u)).$$

- $(\forall x_j A)(\vec{t})$: if x_j is x_i , then

$$(\forall x_i A)(u) = (\forall x_i A)$$

(no change).

11.1.6 Scope of a quantifier, free and bound occurrences

(11.1) Definition Suppose that a quantified formula $(\forall x_i B)$ occurs as part of a formula A . That part of the formula A between the parentheses (...) within the quantified formula $(\forall x_i \dots)$ is called the scope of the given quantifier $\forall x_i$.

An occurrence of x_i is bound if it occurs within the scope of a quantifier $(\forall x_i \dots)$, in which the variable x_i itself is quantified. Otherwise it is free.

If there is at least one free occurrence of x_i in A then we say x_i occurs free in A .

We can describe $A(u)$ more briefly as follows.

(11.2) Lemma The formula $A(u)$ is obtained from $A(x_i)$ by replacing every free occurrence of x_i in $A(x_i)$ by u . ■

11.1.7 Term t free for x_i in $A(x_i)$

The following definition is very important.

Given a formula $A(x_i)$ and a term t , it is possible that there exists a variable x_j in t and a free occurrence of x_i in A such that the occurrence of x_i is within the scope of a quantifier $\forall x_j$

In that case, if we substitute t for x_i , then an occurrence of x_j becomes bound.

Otherwise t is *free for x_i in A* .

(11.3) Definition Again: t is free for x_i in A if no free occurrence of x_i in A is within the scope $(\forall x_j \dots)$ of a quantifier where x_j occurs in t .

11.2 First-order theories

A *first-order theory* K is a system with the following features.

- A first-order language $\mathcal{L}(K)$.
- Five schemes of logical axioms.
- Two inference rules: MP and Generalisation. Generalisation (gen) is

$$A \vdash_K (\forall x_i A)$$

- Proper axioms.¹

The logical axioms are

$$(I.) \ A \Rightarrow (B \Rightarrow A)$$

$$(II.) \ (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

$$(III.) \ ((\neg A) \Rightarrow \neg B) \Rightarrow (((\neg A) \Rightarrow B) \Rightarrow A)$$

(IV.) Only when t is free for x_i in $A(x_i)$:

$$(\forall x_i A(x_i)) \Rightarrow A(t)$$

(V.) Only when x_i does not occur free in A :

$$(\forall x_i (A \Rightarrow B)) \Rightarrow (A \Rightarrow (\forall x_i B))$$

Example. Where Axiom IV does not apply:

$$(\forall x_1 (\exists x_2 (x_1 \neq x_2))) \implies (\exists x_2 (x_2 \neq x_2))$$

¹If there are no proper axioms then the theory is called a predicate calculus.