1 A note on Rice's Theorem

- 1. In defining the partial functions $\phi_m(n) : \mathbb{N} \to \mathbb{N}$, the length-lex encoding comes up at least twice: in m, and in n.
- 2. The partial functions $\phi_m()$ are clearly defined, but they are 'slippery.' Almost nothing can be said about them.

For example, there is no foolproof way to tell, given m and m', whether or not ϕ_m and $\phi_{m'}$ are the same partial function.

1.1 Definition of $\phi_m(n)$, repeated.

We write $\alpha \mapsto n$ where α is a bitstring and n is its length-lex encoding. By 'abuse of notation' we write $n \mapsto \alpha$ to mean that α is the unique bitstring whose length-lex encoding is n.

 $\phi_m()$ is a listing of the partial recursive functions. The listing relies on the encoding chosen of Turing machines as bitstrings.

- For each m, suppose m → α. If α encodes a valid Turing machine T, then for any n, suppose that n → x, i.e., x is the unique bitstring length-lex encoded as n.
- If T halts on input x, let y be the output of T on input x. Then φ_m(n) is defined as r, where r is the length-lex encoding of y. We write φ_m(n) = r, or alternatively φ_m(n) ↓ r.
 - If T loops on input x, then $\phi_m(n)$ is undefined, i.e., n is not in the domain of ϕ ; we write $\phi_m(n) \uparrow$.
- Most natural numbers m do not yield encodings of valid Turing machines. In that case, φ_m() defined as the partial function whose domain is empty; φ_m(n) ↑ for all n.

1.2 Rice's Theorem

We have a complete definition of the partial functions $\phi_m()$, but no useful fact about them can be computed.

That is, if P is a nontrivial fact about ϕ_m , let $Q = \{m : \phi_m() \in P\}$. Rice's Theorem says Q is not recursive. That is, there is no Turing machine T such

- If $m \in Q$ then T halts on input x with output 1, where m is the length-lex encoding of x.
- If $m \notin Q$ then T halts on input x with output 0.

This relies crucially on the fact that

- If $m \in Q$ and $\phi_m() = \phi_{m'}()$ then $m' \in Q$.
- In other words: If m and m' define the same partial function, then both are in Q or both are outside Q.
- This is because the property that $\phi_m() = \phi_{m'}()$ is well-defined in some sense but is computationally infeasible.

1.3 The set of recursive functions is not recursive

Anyway, $\{m: \phi_m() \text{ is recursive}\}$ is not recursive.