

Faculty of Engineering, Mathematics and Science

School of Mathematics

SF/JS/SS Maths/TSM

Michaelmas Term 2018

Mathematics 2361: Computation and Logic

Friday, 14 December 2018 RDS Simmonscourt 9.30–11.30

Prof. Colm Ó Dúnlaing

Instructions to Candidates:

Attempt 3 questions Please fold and glue the bottom right-hand corner of each answer book, to ensure anonymity.

You may not start this examination until you are instructed to do so by the Invigilator.

- (a) (4 marks) Give a Turing machine with input alphabet {0,1,2} which, on input x, interpreted as an integer to the base 3, halts with x + 1 (base 3) on the tape. Neither x nor x + 1 need have leading zeroes suppressed. What does the machine do on input λ?
 - (b) (6 marks) Describe how to encode all possible Turing machines T (with binary input alphabet) as bitstrings.
 - (c) (6 marks) Given

 $\mathsf{HALTING} = \{xy: x \text{ encodes a Turing machine} \\$ which halts on input $y\}$

prove that HALTING is not recursive, i.e., its characteristic function cannot be computed by a Turing machine T which halts on all inputs.

- (d) (4 marks) One can show (using a universal Turing machine) that HALTING is recursively enumerable. Is its complement, {0,1}*\HALTING, recursively enumerable?
 Give a reason.
- 2. (a) (5 marks) Prove by resolution that the following clauses are inconsistent

$$C\overline{D}, \overline{C}D,$$
$$ABC, A\overline{B} \overline{C}, \overline{A}B\overline{C}, \overline{A} \overline{B}C,$$
$$AB\overline{D}, A\overline{B}D, \overline{A}BD, \overline{A}\overline{B}\overline{D}$$

- (b) (4 marks) To 'shortcut' resolution by cancelling two pairs of complementary literals is a serious mistake. Explain why, using UVW and $\overline{V}\overline{W}X$ as an example. (The invalid 'resolvent' would be UX.)
- (c) (5 marks) Give a proof in propositional logic (Sentential Calculus, or SC) of the following result.

 $\neg \neg A \vdash_{\mathrm{SC}} A$

You may assume $\vdash_{SC} X \implies X$ for every formula X.

Page 2 of 4

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2020

- (d) (6 marks) Sketch a proof that if A is a tautology then ⊢_{SC} A. You may assume that the empty clause can be derived from a CNF equivalent to ¬A by repeated resolution, and that if C ∨ L and D ∨ ¬L are clauses with C ∨ D nonempty, then the resolvent C ∨ D can be deduced from these clauses in the Sentential Calculus.
- 3. (a) (4 marks) Given a first-order language, and an interpretation I of that language, define, by induction on the complexity of formulae, the relation

$$I, \sigma \models A$$

where σ is any snapshot.

You need not define the objects $\sigma_{i\mapsto d}$ nor t^{σ} (the value of t under snapshot σ) where t is a term.

- (b) (3 marks) Define what it means for a term t to be free for a variable x_i in a formula
 A(x_i).
- (c) (9 marks) Let A(x_i) be a formula, t a term free for x_i in A(x_i), I an interpretation,
 σ a snapshot, and τ = σ_{i→t^σ}. Then one can prove, by induction on the complexity of A, that

$$I, \sigma \models A(t)$$
 if and only if $I, \tau \models A(x_i)$

Prove two cases: (i) where A is an atomic formula, and (ii) where $A(x_i)$ has the form $\forall x_i B(x_i, x_j)$, where $x_i \neq x_i$ and x_i occurs free in $B(x_i, x_j)$.

You may assume without proof that if x_j does not occur in t then t^{σ} is independent of σ_j , and if $t_r(x_i)$ is any term then $t_r(x_i)^{\tau} = t_r(t)^{\sigma}$.

- (d) (4 marks) Give a formula $A(x_1)$ with just x_1 free, and a suitable interpretation I such that $I \models A(x_1)$ but not $I \models A(x_2)$.
- 4. (a) (6 marks) Define when two sets X, Z of natural numbers are *recursively inseparable*.
 Using the Fixed Point Theorem (without proving it), show that

$$C_0 = \{m : \phi_m(0) \downarrow 0\}$$
 and $C_1 = \{m : \phi_m(0) \downarrow 1\}$

are recursively inseparable.

Page 3 of 4

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2020

(b) (8 marks) Recall the existence of a primitive recursive relation

Result
$$(m, n, y, S)$$

to describe Turing machine computations, with a corresponding formula

Result (x_1, x_2, x_3, x_4) of Peano Arithmetic (PA) expressing that relation.

(i) Give a formula of PA expressing the relation

$$\phi_m(n) \downarrow y$$

(ii) Deduce that the set XX of theorems of PA, and the set ZZ of formulae of PA false in \mathbb{N} , are recursively inseparable.

(c) (6 marks) Deduce that XX, ZZ, and TT, the set of formulae *true* in N, are not recursive.