
MA U11601 Quiz 04 26/11/21 ANSWERS

Answer any 3 questions. Submit them through Blackboard as pdfs, either
handwritten and scanned, or typeset. They should be submitted before midnight
on Monday, 29 November. If more than three answers are submitted, only the
first three will be marked. All questions carry 20 marks.

Show all work. That is, where an answer requires some calculation, show the calculation.
Plagiarism. If copying is detected, all those involved will lose credit, irrespective of who

copied from whom.

Question 1. By analysing the operator precedence, explain

% cat xxx.c

#include <stdio.h>

int main()

{ char x[] = "hello.................",

y[] = "goodbye";

printf("%s\n", x);

char *a = x, *b=y; // a++ increments the address in a by 1

while (*a++ = *b++);

printf("%s\n", x);

}

% gcc xxx.c

% a.out

hello.................

goodbye

%

Answer. It is the while-loop which matters, of course. Referring to the precedence rules,
we can add some parentheses, noting that postfix ++ has higher precedence than prefix *:

while (*(a++) = *(b++))

= has lowest rank

while ((*(a++)) = (*(b++)))

The {\em value} of b++ is its value before incrementing,

and likewise for a, so the assignment is the same as

*a = *b

except that at the next iteration, the addresses in a and b

will have been incremented.

The while loop repeatedly copies from *b to *a.

The {\em value} of the assignment is the value assigned,

so when b reaches the null character in "goodbye",

the loop ends. (Note that x is longer than y, so there

is no array overflow).

Question 2. Write a recursive routine printx(int n), assuming n > 0, prints the (face-
value) hex encoding of n, one hex digit at a time. (Newlines should be omitted).

Hint: char hex[]="0123456789abcdef";

Answer.

#include <stdio.h>

void printx(int n)

{ char hex[] = "0123456789abcdef";

if (n>0)

{ printx(n/16);

printf("%c", hex[n%16]);

}

} // only printx() is required

int main (int argc, char * argv[])

{ int n = atoi (argv[1]);

printf("n %d hex ",n);

printx(n);

printf("\n");

}

Question 3. (i) Simulate xxx(30), where xxx() is the following non-recursive function.
Remember the ‘staggered’ layout to show the order in which variables are changed (Section
12.10). (ii) What does xxx(n) return, for general n ≥ 1? (iii) Give an invariant for the
while-loop.

int xxx(int n)

{

int x,y,z,m;

m = 0; x = 1; y = 2;

while (y <= n)

{ z = 5*y-6*x;

x = y; y = z;

++m;

}

return m;

}

Answer.

n x y z m y<=n

30

1

2

-

0

yes

4

2

4

1

yes

8

4

8

2

yes

16

8

16

3

yes

32

16

32

4

no

returns 4

(ii) In general, returns ⌊log2(n)⌋. (iii) A reasonable loop invariant: x = 2m at them-th iteration
and y = 2m+1.

Question 4. Disambiguate the following by fully parenthesising, and evaluate.
For example,

1 - 2*(3.0+4/5) - 6 =

(1 - (2*(3.0+(4/5)))) - 6 =

(1 - 2*(3.0+0))-6 = (1-6.0) -6 = -11.0

--

(i) 1 - 2/3 + 4.0 (ii) 1 - 2/3.0 + 4

(iii) 3*4/2 (iv) 3/2*4

(v) 1 - (2 - 3 - 4.0)

Answer.

(i) (1 - (2/3)) + 4.0 = 5.000000

(ii) (1-(2/3.0))+4 = 1 - .6666667 + 4 = 4.333333

(iii) (3*4)/2 = 6

(iv) (3/2)*4 = 1 * 4 = 4

(v) 1 - (2-3-4.0) = 1 - ((2-3)-4.0) = 1 - (-1 -4.0) = 6.000000

Question 5. (i) Carefully simulate xxx(1215,2), showing the stack frames associated with
each call to xxx(), and using indentation to identify them clearly (Section 18):

int xxx (int n, int p)

{

int q;

if (n%p == 0)

return p;

else

{ q = xxx (n,p+1);

return q;

}

}

(ii) What does xxx(n,2) return, given general n ≥ 2?
Answer.

n p q n p q n p q n p q

xxx(875,2)

875 2 --

xxx(875,3)

875 3 --

xxx(875,4)

875 4 --

xxx(875,5)

875 5 --

return 5

xxx(875,4) resume

875 4 5 return 5

xxx(875,3) resume

875 3 5 return 5

xxx(875,2) resume

875 2 5 return 5

In general, it returns the smallest prime divisor of n.
Question 6. Identify five mistakes in the program below. Some mistakes may be errors

which block compilation, others may raise warnings, and others may be compiled but not work
properly.

#include <stdio.h>

void xx(int m[4])

{

int s =0;

for (i=0; i<4; ++i); // i undeclared

// semicolon kills for loop

{ s+=m[i]}; // displaced semicolon

return s; // void: cannot return anything

}

main()

{

char y[16] = "hello";

for(i=0; i<16; ++i)

printf(" %d", y[i]);

printf("%d %d\n",strlen(y), xx(y));

// missing string.h

// xx(y) void, meaningless

}

