13 Recursion

13.1 Two examples

A routine which calls itself is called recursive. For example, this program uses a recursive
version of gcd():

#include <stdio.h>
#include <stdlib.h>

int gcd (int m, int n)

{
if (n==20)
{ return m;?}
else
{ return gcd (n, m/n);
}
int main ()
{
int m,n;
while (scanf("%d %d", &m, &n) == 2)
{
printf("gcd(%d,%d) is %d\n", m,n,gcd(abs(m), abs(n)));
/- Tontonnnnnnes
+
// In the 2/11/21 lecture, the sign correction
// was omitted, initially.
}

It works. The gcd () function is recursive and based directly on the fact that gcd(m,n) =
gcd(n,m¥%n). The previous, iterative, version works for the same reason, but it’s not so evident.

Another function was shown which adds array elements recursively. Again there was an
error initially, though the data didn’t show it.

#include <stdio.h>
// The version on slides in the 11th lecture
// wrongly included a[n]. Changes:
// if (n<=0), not <0, and add a[n-1] to the total,
// not aln].

int total (int n, int al])
{

if (n<=0)

{ return 0; %}

else

{ return total (n-1, a) + a[n-1]; }

}
int main ()
{
int array[1000];
int count, x;
count =0;
while (count < 1000 && scanf("%4d", &x) == 1)
{ array[count] = x;
++ count;
}
printf ("%d numbers total ’%d\n",
count, total(count, array));
}

Again, this works. It is based on the fact that, assuming n > 0,

Zai: (Z a;) + an_1

<n i<n—1

13.2 How does recursion work?

It works because of the runtime memory stack organisation. This will be discussed in another
lecture.

13.3 Is this useful?

Sometimes it is, not always. Recursion can give some short, simple, programs. Some examples
follow below, and some of them are striking and some of them are unnecessary.

13.4 Printing a decimal number

This one isn’t useful, but it is interesting. The idea is that to print n, first print n/10 and then
print the last digit, n % 10.

% cat rec-decimal-print.c
#include <stdio.h>
#include <stdlib.h>

int rec_print(int n) // if n==0, prints nothing
{
if (n>0)
{
rec_print (n/10);
printf ("%d", n%10);

int main (int argc, char * argv([])
{
int n = atoi (argv([1l]);
if (n==0) // rec_print does nothing with O
printf("0\n");
else
{
rec_print(n);
printf("\n");
}
}
% gcc rec-decimal-print.c
% a.out 314159265
314159265
% a.out O
0
b

13.5 Russian Peasant multiplication

This multiplies mn by a process based on the binary representation of n.

% cat peasant.c
#include <stdio.h>

int product (int m, int n) // assumed nonnegative
{
if (n==20)
return O;
else
{
int p = product (m, n/2);
if (n%2 == 0)
{ return p + p; }
else
{ return p + p + m; }

}

int main (int argc, char * argv[])
{

int m = atoi (argv[1]), n = atoi (argv[2]);

printf("%d x %d is %d\n", m, n, product(m,n));

% gcc peasant.c

% a.out 9 0

9x 01is O

% a.out 99 9

99 x 9 is 891

% a.out 9 99

9 x 99 is 891

% a.out 12345 678
12345 x 678 is 8369910
pA

This method of multiplying numbers is not of any practical value, but the idea could be
adapted to calculate A™ where A is a square matrix, and that would be efficient.

13.6 Prime factorisation

This is based on the fact that if n is not prime, and m is its smallest diviser > 2, then m is
prime and you next factorise n/m.

% cat factors.c
#include <stdio.h>
#include <stdlib.h>

int divides (int m, int n)
{

return n == || (m '=0 && n % m == 0);

void factorise (int n)
{
int m;
int seems_prime = 1;
for (m = 2; seems_prime && m<n; ++m)

{
if (divides (m,n))
{
seems_prime = 0;
printf(" %d", m);
factorise (n/m);
}
b

if (seems_prime)

printf(" %d", n);

int main (int argc, char * argv [])

{
int n = atoi (argv([1l]);
printf("factors of %d: ", n);
factorise (n);
printf("\n");

}

% gcc factors.c

% a.out 99

factors of 99: 3 3 11

% a.out 123

factors of 123: 3 41

% a.out 127

factors of 127: 127

% a.out 1073741823

factors of 1073741823: 3 3 7 11 31 151 331

yA

	Recursion
	Two examples
	How does recursion work?
	Is this useful?
	Printing a decimal number
	Russian Peasant multiplication
	Prime factorisation

