
2 Print a variable

2.1 General structure of a C program

A C program is, at its simplest,

Some #include statements

int main () // the int is a convention

{

...declarations and other statements ...

}

Every statement ends in a semicolon.

A declaration introduces one or more variables.

2.2 Integer variables

Example of an integer variable.

#include <stdio.h>

int main()

{

int i;

i = 13;

printf("i is %d\n", i);

}

-------------------------

% gcc print1.c

% a.out

i is 13

This program has three statements.

int i;

// this is a declaration, declaring that ‘i’

// is is the name of an integer variable.

i = 13;

// this assigns the value 13 to i.

printf("i is %d\n", i);

// this prints the value of i, with surrounding

// text. The %d shows where value of i will be

// placed in the output. %d means ‘integer value’

// within print statements.

1



2.3 Printing integer expressions

#include <stdio.h>

int main()

{

int i;

i = 13*14;

printf("i is %d\n", i+15);

}

This shows that one can — this is no great surprise — do arithmetic in C. Also, one can
print i+15 which has a definite value but is more than a single variable. Its output is

i is 197

2.4 Arithmetic operations

For the present, only integer data is considered.1

Integer expressions are formed from integer variables and constants (such as −45) with the
following binary operators

+ - * / %

whose meanings are mostly obvious. There are no keyboard characters for × and ÷, so ∗ and
/ are used.

The percent sign is remainder modulo: m % n is the remainder on dividing m by n.

2.4.1 Round towards zero

Technically, integer division, in the usual mathematical convention, satisfies the following prop-
erty. We write ÷ for integer division. Assume n > 0. (The case n < 0 is not worth considering).

It can be shown that there exist unique integers q and r such that

m = qn+ r and 0 ≤ r ≤ n− 1

We recognise q as the quotient m ÷ n, and r as the remainder m mod n. The quotient is
rounded down.

If m is nonnegative, then exactly the same holds in C:

m == (m/n)*n + m%n

If m is negative (still assuming that n is positive), then the remainder is non-positive, and
the quotient is rounded up. So again,

m == (m/n)*n + m%n

but m%n is non-positive and (m/n)*n is ≥ m.

1 double is for non-integer data, to high precision.

2



2.5 Assignment

x = y;

is not an equation

it is an assignment. The value of y, which could be a very complicated expression, is calculated,
and assigned to x.

So, for example, after these two statements are executed,

x = 14;

x = x+1;

x has the value 15.

3


	Print a variable
	General structure of a C program
	Integer variables
	Printing integer expressions
	Arithmetic operations
	Round towards zero

	Assignment


