12 Functions and routines; simulation

12.1 Preview

Routines and functions will be introduced. The important ideas connected with them are

e Return type — routines have ‘return type’ void.
e Function/routine arguments
e Local variables

e Calling a function/routine

12.2 Routines
Up to now, all programs have fitted the pattern

#include ...
int main (...)

{

by

and all the work is crammed into the ‘main’ part. This would be very difficult if the program
performs a complex task. In that case, the work should be divided into smaller pieces and each
piece should be performed within a single function or routine.

We have used several functions and routines already.

atoi () a function
atof () a function
scanf () a function
printf () a routine

The difference between function and routine is that a function returns a value whereas a routine
performs a task without returning a particular value.
The main procedurdlis actually a function:

int main (int argc, char *argv([])
{
}

If you remember to put return statements in the main procedure, the value returned can be
picked up by the operating system. Usually the value returned indicates successful /unsuccessful
termination of the program.

The function main() has two arguments, argc and argv.

Every function or routine follows the same pattern as main:

IProcedure is another word for routine.

<return type> <name> (<argument list>), e.g.,

<return type> = ‘int’ <name> = ‘main’ (<arg list> = ‘int argc, char *argv([]’)
{

}

where the return type can be int, char, char*, etcetera.
A routine is the same except that the return type is void:

void <name> (<argument list>)
{
b

12.3 Little example of a routine

#include <stdio.h>
void show (int n)

{
printf("n is %d\n", n);
}
int main()
{
show (45) ;
}

12.4 GCD example.

The following code implements Euclid’s ged algorithm. Note the ‘two at a time’ comment,
where scanf is reading two numbers at a time. The code reads pairs of numbers and prints
their gecd. Remember that the value returned by scanf () is the number of items read, if at
least one item has been read.

More comments could be added later to explain how the function works.

#include <stdio.h>
#include <stdlib.h>

int gcd (int m, int n)

{
int x = abs(m), y = abs(n);
int z;
while (y > 0)
{
z=xhy; X =Y; ¥ = Z;
}
return Xx;
}

int main ()

{
int m,n;
while (scanf("%d %d", &m, &n) == 2) // two at a time
{
printf("gcd(%d,%d) is %d\n", m,n,gcd(m,n));
}
}

Jicat forgcd
12-346 8 15 35 60 -90
%hgcc simpleged.c

ha.out < forgcd

gcd(1,2) is 1

gcd(-3,4) is 1

gcd(6,8) is 2

gcd(15,35) is 5
gcd(60,-90) is 30

h

12.5 Arguments and local variables

To avoid repeating ‘routine or function,” ‘routine’ will mean both.

Routines in general have arguments, like m,n in the gcd routine, and local variables like
X,¥,z in the same routine.

The namneéﬂ X,y,z may occur in many other routines (in the same program), but they
have no connection with any other variable of the same name. That’s why they’re called local
variables.

The arguments like m,n can be treated like local variables. Their names do not connect
them with any other variable or argument in other routines.

12.6 Calls to routines and functions

From above:
printf("gcd(%d,%d) is %d\n", m,n,gcd(m,n));

The expression
gcd(m,n)

in the above line is a call to the function gcd(m,n). The following happens.

e The values of m,n in the main() procedure are copied to the arguments m,n of the gcd ()
procedure. The variables m,n in main() have the same names as in gcd (), but that is a
coincidence.

2Technically called ‘identifiers.’

e The statements in gcd () are executed as given, and the final value of x is returned.

e The value returned is what is printed as gcd(m,n).

12.7 Another version of gcd()

It is said that the arguments m,n behave as local variables. The local variables x,y are not
required.
One could revise the function as follows:

int ged (int m, int n)

{
m = abs(m), n = abs(n);
int z;
while (n > 0)
{
Z=mjn; m=n; n = z;
+
return m;
}
int main ()
{
int m,n,g;
while (scanf("%d %d", &m, &n) == 2) // two at a time
{
g = gcd(m,n);
printf("gcd(/d,%d) is %d\n", m,n,g);
+
}

The resulting program gives the same output as the original. But look at the call g =
gcd(m,n) ; When the function is called, the argument m is changed and actually is returned as
the gcd () value, assigned to g. But the m in the main program is not changed, as the printout
proves, or will if you compile and run the program. This is because the two variables are
completely different; they have the same name, but that is a coincidence.

The versions where m,n are used as local variables save a tiny amount of space, but the
code is harder to understand, or to discuss.

12.8 Boolean functions

In C (at least, in its original form), there is no special boolean type (taking the values
true/false). Expressions formed with the logical connectives and relations are actually evaulated,
to integers. Conventionally, 1 means true and 0 means false[]

3 Actually 0 means false and any nonzero integer is interpreted as true.

So here is a piece of code which assumes 0 < yy < 99 and yy is a year in this century, and
returns 1 if a leap year and 0 otherwise.

int leapyear (int yy)
{

return yy % 4 == 0;
}

Exercise: rewrite leapyear () to allow for any any yy > 1582.
Here is a similar example.

#include <stdio.h>
#include <stdlib.h>

int divides (int m, int n)

{
return (m '= 0) & (n % m == 0);
+
int main (int argc, char * argv [])
{
int m = atoi (argv[1]), n = atoi (argv[2]);
if (divides (m, n))
printf ("%d divides %d\n", m, n);
else
printf("%d does not divide %d\n", m, n);
}

12.9 An array argument

We have seen this already: argv[]. The next example shows numbers being read into an array,
and the array being passed to a function total ().

C, at least in its original form, pays no attention to the size of an array, the amount of
memory reserved for the array. So it is necessary to communicate the number of array entries
to be added: int total (int n, int a[]). The argument n is the number of array entries
to be totalled.

Notice that the size of the array al[] is not given. The function will add n array entries,
whether or not that equals the array size. Compare with int main (int argc, char *
argv([]).

T

cat addup-array.c

#include <stdio.h>
int total (int n, int al])

{

by

int s = 0;

int 1i;

for (i=0; i<n; ++i)
{s=s+alil;

}

return s;

int main ()

{

h
h

T

int array[1000];
int count, x;
count =0;
while (count < 1000 && scanf("%4d", &x) == 1)
{ array[count] = x;
++ count;
}

printf("%d numbers total %d\n", count, total(count, array));

gcc addup-array.c
a.out
14159265
numbers total 36

12.10 Simulating the gcd() function

Simulation often helps one to understand how a routine works. For example, let us simulate
gcd(63,35), with the original code.

int gcd (int m, int n)

{

int x = abs(m), y = abs(n);
int z;
while (y > 0)
{

z=xhy; X =Y; ¥ = 2;
}

return x;

You should show the values taken by m,n,x,y,z. It is not necessary to recite each statement,

so long as the effect of the statement is clear. But also we should include the value of the

condition y > 0, since it controls the while-loop. The condition evaluates to 1 or 0, but it is
clearer to write yes or no.

Also, the presentation should be staggered so that the order in which the statements are
executed is clear. (The order of the three assignment statements in the while-loop is crucial.)

m n x y z y>0
63 35
63
35
yes
28
35
28
yes
7
28
7
yes
0
7
0
no
return 7

12.11 Simulating the total() function

int total (int n, int al])
{ int s = 0;

int i;

for (i=0; i<n; ++i)

{s =185+ alil;

+

return s;

}

For example, totalling an array {3,1,4} with n==3. The arguments are 3,
the local variables are s,1 We also show a[i] and the condition i<n.

n
3

return 8

a
{3,1,4}

i<n afli]

yes

3
yes

1
yes

4
no

{3,1,4}, and

