
9 Floating-point numbers

Floating-point numbers come in (at least) two different lengths: single and double precision,
32 and 64 bits. Single-precision (float) are used only where memory is scarce and are not
used in this module, except to illustrate how floating-point numbers are encoded.

9.1 Fractions in different bases

A (nonnegative) ‘radix-point’ number in base R (for want of a better term) is a sequence

ak−1 . . . a0·d1d2 . . .

and its value is ∑
i

aiR
i +

∑
j

dj
Rj

its integer part plus its fractional part.
To calculate the digits in the fractional part, here is a concrete example.

7

13
= .d1d2 . . .

in decimal.
Multiply by 10:

70

13
= d1.d2 . . .

so d1 is the integer part of 70/13.
d1 = 5

Subtract 5 from each side and you get

5

13
= .d2d3 . . .

Multiply by 10
50

13
= d2.d3 . . .

so d2 = 3. Subtract from both sides

11

13
= .d3d4 . . .

Multiply by 10
110

13
= d3.d4 . . .

and d3 = 110/13 = 8. Subtract 8 from both sides.

6

13
= .d4 . . .

1



Multiply by 10
60

13
= d4.d5 . . .

so d4 = 4.Subtract 4 from both sides

8

13
= .d5d6 . . .

Multiply by 10
80

13
= d5.d6 . . .

So d5 = 6. Subtract 6 from both sides

2

13
= .d6d7 . . .

Multiply by 10.
20

13
= d6.d7 . . .

So d6 = 1. Subtract 1 from both sides.

7

13
= .d7 . . .

Now we have a recurrence and

7

13
= .d1 . . . d6d1 . . . d6 . . .

This can be checked.

538461

10−6 + 10−12 . . .
=

538461

999999
.

Multiply the numerator by 13 and the denominator by 7. They both equal 6999993.
The procedure in general is as follows. To convert a number x, where 0 ≤ x < 1, to a

radix R radix-point number,

• Let x0 = x.

• Let x1 = Rx0, d1 = bx1/Rc (integer part).

• Let x2 = R(x1 − d1), d2 = bx2/Rc

• Let xi+1 = R(xi − di), di+1 = bxi+1/Rc and so on.

Tabulating the calculation

xi 70/13 50/13 110/13 60/13 80/13 20/13
di 5 3 8 4 6 1

Example Calculate 7/13 as a ‘binary-point’ number. Just tabulating the calculation.

2



xi 14/13 2/13 4/13 8/13 16/13 6/13 12/13 24/13 22/13 18/13 10/13 20/13
di 1 0 0 0 1 0 0 1 1 1 0 1

Since the next value of xi would be 14/13, this recurs every 12 bits. Summing a power
series, this evaluates to 2205/4095, which multiplied by 13/7 gives 1.

Example Calculate 7/13 as a ‘hex-point’ number.

xi 112/13 128/13 176/13 112/13 . . .
di 8 9 13 8 . . .

and
7/13 = .89d89d . . .

9.2 Scientific notation

There is a so-called scientific notation for decimal numbers used on calculators. This notation
can be used in printf with the %e format item.

%

% cat scien.c

#include <stdio.h>

int main()

{

double x = 12345.6789, y = 9876.54321;

printf("%%f and %%e notations\n");

printf("%f %e\n", x,x);

printf("%f %e\n", y,y);

}

% gcc scien.c

% a.out

%f and %e notations

12345.678900 1.234568e+04

9876.543210 9.876543e+03

%

In
1.234568e+04 ≡ 1.234568× 104

There is a sign (omitted; positive), a mantissa 1.234568 and exponent 4.
The mantissa is ≥ 1 and < 10. All nonzero numbers can be represented this way. Zero is

an exception.
Notice that the mantissa is rounded to 6 decimal places.

3



9.3 Floating-point single precision

Scientific notation will not be used in this module, except as an introduction to the floating-
point encoding.

There is some distinction between ‘mantissa’ and ‘significand’ but we’ll always refer to
mantissa.

A single-precision floating-point number occupies 32 bits. Counted from ‘high order’ to
‘low order’ they are

• Sign bit, 1 for negative, 0 for nonnegative.

• 8-bit ‘biased’ exponent b.

• 23-bit mantissa
a1 . . . a23

• Definition Except when all bits (except the sign bit) are zero, the number represented
is

±2b−127 × (1.a1 . . . a23)2

• Note that the ‘true’ mantissa is at least 1 and less than 2.

The exponent is ‘biased’ rather than 2s-complement. The reason for this is probably:
Fact. (00000000)16 encodes zero.

9.4 Example

Calculate the single-precision encoding of −5/104.
First, we need to express it in the form

(sign)(power of 2)M

where 1 ≤M < 2. The sign is negative. To get the correct power of 2, keep multiplying (or in
other examples dividing) by 2 until you get a number in this range.

5/104 7→ 5/52 7→ 5/26 7→ 5/13 7→ 10/13 7→ 20/13

The last, 20/13, is in the correct range. It required multiplication by 32 to get this.

−5/104 = (−1)(2−5)(20/13)

Note that, here at least,
1.a1a2 . . .

encodes
1 + a1/2 + a2/4 + a3/8 . . . = 20/13

We compute the bits ai by successive doubling and subtracting 1 where ≥ 1. At the first
step, 1 is subtracted and we get 7/13 = a1/2 + a2/4 . . .

4



7/13 double for a_1

14/13 a_1 = 1. Sub 1: 1/13

2/13 a_2 = 0

4/13 a_3 = 0

8/13 a_4 = 0

16/13 a_5 = 1. Sub 1: 3/13

6/13 a_6 = 0

12/13 a_7 = 0

24/13 a_8 = 1 Sub 1: 11/13

22/13 a_9 = 1 sub 1: 9/13

18/13 a_10 = 1 sub 1 5/13

10/13 a_11 = 0

20/13 a_12 = 1 sub 1 7/13

14/13 a_13 = 1

20/13 = 1.1000100111011

------------ recurrent

20/13 = 1.100010011101 100010011101 100010011101 etc

This can be checked as a geometric series. The 12-bit recurring block gives

1 + 2205× 1

4096
(1 + (1/4096) + (1/4096)2 . . .) = 1 +

2205

4095
= 1 +

7

13

as expected.
Convert the mantissa to 23 bits. Discarding the ‘1.’ part,

100010011101100010011101 . . .

Now, the last of these 24 bits is a 1-bit, and the rule is to round. In terms of binary
arithmetic, this amounts to adding 1 to a 23-bit number

100010011101 10001001110

+ 1

100010011101 10001001111

(This time there was no carrying. There usually is).
Now the sign and mantissa have been computed. The true exponent is −5. We convert it

to the biased exponent by adding 127.
127 − 5 = 122. Convert 122 to binary. Or, rather more efficiently, convert it to hex. This

is ok since the 8 binary digits fit two hex digits exactly.

7 answer (7a)_16 = (0111 1010)_2

16 ) 122

112

10

Putting all together

5



1 sign

0111 1010 biased exponent

100010011101 10001001111 rounded mantissa

1 011 1 101 0 100 0100 1110 1 100 0100 1111

A hex answer is required

1 011 1 101 0 100 0100 1110 1 100 0100 1111

b d 4 4 e c 4 f

One last wrinkle. On Intel processors these are stored ‘little endian’ by reversing the
bytes (not the hex digits within the bytes).

4fec44bd

9.5 Double precision

This format is the same as single precision, with different numbers, of course.

• Sign bit.

• 11-bit biased exponent. The bias is 1023.

• 52-bit rounded mantissa.

The last example is easily adapted to double precision.
For the biased exponent, convert 1023 − 5 = 1018 to 11-bit binary. This will fit in 3 hex

digits.

63 r 10 3 r 15 3fa

16 ) 1018 16)63 011 1111 1010

96 48

58 15

48

10

1 011 1111 1010

53 bits for mantissa.

100010011101 100010011101 100010011101 100010011101 1000 1

+ 1

100010011101 100010011101 100010011101 100010011101 1001

Altogether

1 011 1111 1010

b f a

1000 1001 1101 1000 1001 1101

8 9 d 8 9 d

6



1000 1001 1101 1000 1001 1101 1001

8 9 d 8 9 d 9

Little endian

d9 89 9d d8 89 9d a8 bf

9.6 Ints are little-endian too

Actually short and int variables are stored little-endian as well. This was not mentioned
before because it would make hand-calculation exercises more confusing.

7


