1 A first C program

1.1 In defence of C

e The C programming language has been around for almost 50 years. There are more
powerful and sophisticated languages which are extensions of C, such as C++ and Java.

e Many powerful ‘libraries’ come with these languages, and actually it is rather easy, if you
know C, to learn enough C++ to use these libraries. But C++ is complicated and it is
a much harder job to actually create such libraries.

e C is a small language and one can learn most of it in a single term. It is unsuitable for
projects written by teams of programmers, but can be useful for fairly small jobs, and is
the right place to start if you want to learn C++ or Java.

e Modern software is often very greedy of computer resources, occupying disc space mea-
sured in gigabytes and requiring powerful machinery even to start running in less than
half an hour. Often one can get the results in a few seconds using C code.

e ‘Moore’s law’ predicted in 1965 that computer chips would double in speed every two
years, and that prediction was fulfilled. But that rate of improvement has ended and
efficiency cannot be ignored forever. C was meant to be efficient (important for the
processors of the 1970s).

e (This point is not favourable.) Programming in C is hard. Mistakes in C programs can
be very hard to find. C was meant to be efficient but not to be easy.

1.2 The minimal C program

The simplest C program is

main()

{}

Imagine that the above code is written in a file nothing. c, stored in a subdirectory called
cprogs. You need a compiler, software to translate this file into machine code; for example
gcc or clang. This machine (on which these notes are being written) runs gcc.

% cd cprogs/

% 1s

nothing.c

% gcc nothing.c
% 1s

a.out nothing.c
h

Before gcc there is one file in cprogs. After gcc, there are two. The second file a.out is code
which the computer can run directly. To run it, type its name.



%a.out

h

and the program executes successfully. What does it do? Nothing.

1.3 The smallest program which does something

Every program except the silliest must produce some output. We use printf to produce output
— to the terminal (monitor). This is not officially a C feature. It is essential to tell the C
compiler what it does, hence the include statement below. Suppose the C code is stored in
hurrah.c

% cat hurrah.c
#include <stdio.h> // essential for input and output
main () // these parentheses are essential

{

printf ("Hurrah for programming\n");

}

// Two slashes introduce a comment.
% gcc hurrah.c

% a.out

Hurrah for programming

h

What about the percent sign in gcc hurrah.c, and so on? It is a command prompt asking
you to enter a command — in this case the command is to compile hurrah.c

% gcc hurrah.c

The gcc compiler is run on hurrah. ¢ It produces no visible output, but it creates the file a. out
Because there is no visible output, the command prompt returns. Next

% a.out
Now the computer executes a.out which does produce visible output.
Hurrah for programming

And next we get a command prompt. The \n indicates newline. If omitted then the % would
appear to be stuck to the end of the line. If omitted,

printf ("Hurrah for programming");
and we compile and run the program, we get
Hurrah for programming?

What about the semicolon? See the next section of the notes.



	A first C program
	In defence of C
	The minimal C program
	The smallest program which does something


