
18 The runtime stack, recursion explained and simu-

lated

Here is a recursive version of gcd().

int gcd(int m, int n) // assume m>=n>=0 and m>0; not all necessary

{

if (n==0)

return m;

else

{ int p; // not essential, makes things clearer

p = gcd (n, m-n);

return p;

}

}

gcd(40,25) will call

gcd(25,15) which calls

gcd(15,10) which calls

gcd(10,5) which calls

gcd(5,0)

gcd(5,0) returns 5 to the calling routine

gcd(10,5) returns 5 to the calling routine

gcd(15,10) returns 5 to the calling routine

gcd(25,15) returns 5 to the calling routine

gcd(40,25) which returns 5 to its calling routine.

In general, when routine A calls routine B, then when B terminates, A is resumed. There

is a nesting effect. To show the nesting pattern, we shall use indentation.

gcd(40,25) calls

gcd(25,15): gcd(40,25) pauses and gcd(25,15) calls

gcd(15,10) gcd(40,25), gcd(25,15) both paused, next call

gcd(10,5) gcd(40,25), gcd(25,15), gcd (10,5) paused, next call

gcd(5,0)

gcd(5,0) returns and

gcd(10,5) resumes, returning 5

gcd(15,10) resumes returning 5

gcd(25,15) resumes, returning 5

gcd(40,25) resumes, returning 5

So, at any time a particular routine is operating, and some others are paused, incomplete.

Again:

int gcd(int m, int n) // assume m>=n>=0 and m>0; not all necessary

{

1

if (n==0)

return m;

else

{ int p; // not essential, makes things clearer

p = gcd (n, m-n);

return p;

}

}

There are two arguments and one local variable, that is, when gcd() is called there are three

variables of interest:

m n p

The runtime stack. There is a section of memory called the runtime stack in which the

local variables of the routine operating and any incomplete, paused, routines, are stored. The

variables connected with a particular routine are stored in a stack frame. When the routine

begins, the frame is created and initialised. When it ends, the frame is removed, exposing the

frame of the calling routine.

We illustrate them with indenting. This time the calls are on the right.

m n p m n p m n p m n p m n p

|40,25,--|...gcd(40,25)

|25,15,--|............................... gcd(25,15)

|15,10,--|..................... gcd(15,10)

|10,5,--|............ gcd(10,5)

| 5, 0,--|.. gcd(5,0)

| 5, 0,--|.. gcd(5,0) ret 5

|10,5, 5|............ gcd(10,5) ret 5

|15,10, 5|..................... gcd(15,10) ret 5

|25,15, 5|............................... gcd(25,15) ret 5

|40,25, 5|...gcd(40,25) ret 5

18.1 Russian Peasant multiplication

int product (int m, int n) // assumed nonnegative

{

if (n == 0)

return 0;

else

{

int p = product (m, n/2);

if (n%2 == 0)

{ return p + p; }

else

{ return p + p + m; }

2

}

}

Simulate product(5,10).

product(5,10)

|5,10,--|

product(5,5)

|.......||5,5,--|

product(5,2)

|...............||5,2,--|

product(5,1)

|.......................||5,1,--|

product(5,0)

|...............................||5,0,--|

returns 0

product(5,1) resumes

|.......................||5,1, 0|

1 is odd: returns 0+0+5

product(5,2) resumes

|...............||5,2, 5|

2 is even: returns 5+5

product(5,5) resumes

|.......||5,5,10|

5 is odd: returns 10+10+5

product(5,10) resumes

|5,10,25|

10 is even: returns 25+25 = 50

3

	The runtime stack, recursion explained and simulated
	Russian Peasant multiplication

