18 The runtime stack, recursion explained and simu-
lated
Here is a recursive version of gcd ().

int gcd(int m, int n) // assume m>=n>=0 and m>0; not all necessary

{

if (n==0)
return m;
else

{ int p; // not essential, makes things clearer
p=gcd (n, mn);
return p;
+
}

gcd(40,25) will call

gcd(25,15) which calls

gcd(15,10) which calls

gcd(10,5) which calls

gcd(5,0)

gcd(5,0) returns 5 to the calling routine
gcd(10,5) returns 5 to the calling routine
gcd(15,10) returns 5 to the calling routine
gcd(25,15) returns 5 to the calling routine
gcd(40,25) which returns 5 to its calling routine.

In general, when routine A calls routine B, then when B terminates, A is resumed. There
is a nesting effect. To show the nesting pattern, we shall use indentation.

gcd (40,25) calls
gcd(25,15): gcd(40,25) pauses and gcd(25,15) calls
gcd(15,10) gcd(40,25), gcd(25,15) both paused, next call
gcd(10,5) gcd(40,25), gcd(25,15), gcd (10,5) paused, next call
gcd(5,0)
gcd(5,0) returns and
gcd(10,5) resumes, returning 5
gcd(15,10) resumes returning 5
gcd(25,15) resumes, returning 5
gcd(40,25) resumes, returning 5

So, at any time a particular routine is operating, and some others are paused, incomplete.
Again:

int gcd(int m, int n) // assume m>=n>=0 and m>0; not all necessary

{

if (n==0)
return m;

else

{ int p; // not essential, makes things clearer
p=gcd (n, mn);
return p;

b

X

There are two arguments and one local variable, that is, when gcd () is called there are three
variables of interest:

m n p

The runtime stack. There is a section of memory called the runtime stack in which the
local variables of the routine operating and any incomplete, paused, routines, are stored. The
variables connected with a particular routine are stored in a stack frame. When the routine
begins, the frame is created and initialised. When it ends, the frame is removed, exposing the
frame of the calling routine.

We illustrate them with indenting. This time the calls are on the right.

m n p m n p m n p m n p m n p
140,25, == | et it et e gcd (40,25)
|25, 15, == e gcd(25,15)
[15,10, =] .o gcd(15,10)
110,5,==l ..., gcd(10,5)
| 5, 0,—-1.. gcd(5,0)
| 5, 0,--1.. gcd(5,0) ret 5
10,5, 5l............ gcd(10,5) ret 5
[15,10, 5l ... gcd(15,10) ret 5
25,15, Bl gcd(25,15) ret 5
40,25, Bl ettt e e gcd (40,25) ret 5

18.1 Russian Peasant multiplication

int product (int m, int n) // assumed nonnegative
{
if (n==20)
return O;
else
{
int p = product (m, n/2);
if (n%2 == 0)
{ return p + p; }
else
{ return p + p + m; }

Simulate product (5,10).
product (5,10)
product(5,5)
product(5,2)
product (5,1)
product (5,0)

returns O
product(5,1) resumes

1 is odd: returns 0+0+5
product(5,2) resumes
............... 15,2, 5l
2 is even: returns 5+5
product(5,5) resumes
....... 15,5,10]
5 is odd: returns 10+10+5
product(5,10) resumes
15,10,25|
10 is even: returns 25+25 = 50

	The runtime stack, recursion explained and simulated
	Russian Peasant multiplication

