
17 Conversions, casts, and operator precedence

17.1 Arithmetic expressions

� These are expressions combining numbers using +,−, ∗, /,% and parentheses.

� There are rules of ‘precedence’ which follow the old conventions of algebra. Expres-
sions are evaluated from left to right, parenthesised expressions are evaluated first, and
multiplication and division come before addition and subtraction (BODMAS).

� Numeric types are double, int, char, also float, long, short which don’t concern
us now. Expressions can contain a mixture of different types.

Conversion.

� An integer-valued expression can be converted to a double-precision expression with the
same value. Example

double x = 1;

printf("%f\n",x);

will print 1.000000

� A double-precision expression can (if within integer range) be converted to an integer
value, rounded towards zero: positive doubles get rounded down and negative doubles
get rounded up. Example.

int x = 1.23, y = -1.23; printf("%d %d\n", x,y); prints

1 -1

� Where int, double, char occur in the same expression, char is converted to int or
double and int is converted to double.

Char to int conversion. On intel machines at least, chars are regarded as 8-bit 2s
complement integers! The trouble is that if a char has face value between 128 and 255, it
is regarded as negative, and if assigned to an int, the int will be negative. This can be a
nuisance. It can be avoided by using the unsigned char type, which is not covered in this
module.1

17.2 Types of constants

Here are some constants. They have an implicit type.

’\n’ char

’a’ char

-45 int

"hello" character string

1.23 double

2.00 double

1
The usual ascii characters are ≤ 127. I’m not sure about the others.

1

17.3 Casts

An example of a cast is

(int) 1.23

The (int) is called a cast and it ‘casts’ the expression into an integer, i.e., the double expression
is converted to an int.

17.4 Casts and pointers

A typical example of pointer usage:

char * x = (char*) calloc(1, 100);

This (char*) is a cast, but the address is unchanged. The cast does not change the address,
but it changes its meaning. The bizarre example below is to illustrate this.

#include <stdio.h>

main()

{ int num = 260;

int * x = & num;

printf("x: %d\n", x[0]);

printf("x cast to char*: %d\n", ((char*)x)[0]);

}

% a.out

x: 260

x cast to char*: 4

17.5 Routines

The argument list in a routine specifies the types of the arguments. When the routine is called,
the arguments in the calling routine are automatically converted to the correct types.

The printf() routine does a lot of conversions. For example, floats are automatically
converted to doubles, and chars to ints. (This conversion is invisible since ints are little endian.)
You can print a char variable with %d or %c format; you will get an answer for each, though
the %d gives its ascii rather than printed value.

17.6 Assignment operators

The operators x++, ++x, x--, --x, x=y, x += y, etcetera have the property that they do
something and also return a value.

So

The value of x++ is x and its effect is to add 1 to x.

The value of ++x is x+1 and its effect is to add 1 to x.

x--, --x, similar.

2

The value of x=y is that of y and its effect is to

assign this value to x.

the value of x+=y is x+y and its effect is to assign

that value to x.

etcetera.

Assignments are evaluated right to left! As a result,

x = y = z = 0;

sets x, y, and z, all to zero.

17.7 & operator and * operator

Given

int * x;

the expression

*x

is the int value stored at x.

*x and x[0] are identical.

&x is, of course, the address of the variable x.

17.8 Operator precedence

Note. This is hopefully a correct transcription of rules from internet sources. The only purpose
of these rules is to avoid too many parentheses. It is unwise to rely on one’s mastery of these
rules. If in doubt, add parentheses.

C applies the BODMAS rules for arithmetic expressions. Parenthesised expressions are
evaluated first, then *,/,%, left to right, then +,- left to right.

C is full of operators, and they have carefully defined precedence rules for the order of
evaluation. The following list covers the operators taught in this module.

1. Highest precedence, left to right. They have the same precedence, with the left-to-right
rule for breaking ties.

() Function call (previously forgotten),
[] (i.e., accessing array element),
Postfix increment/decrement x++, x--

2. Right to left: Prefix increment/decrement ++x, --x,
! (logical negation, previously forgotten)
Casts,
*p (the value stored at location p),
& (address),
sizeof().

3

3. Left to right: ∗, /,% multiplication, division, remainder modulo

4. Left to right: +,− addition, subtraction

5. Left to right: <,<=, >=, > logical relations

6. Left to right: ==, ! = logical relations

7. Left to right: && logical AND

8. Left to right: || logical OR

9. Right to left: =, + =, − =, etcetera Assignment and assignment operators

Examples.

Disambiguate the following expressions by inserting parentheses, and say whether the ex-
pression is meaningful (legal), assuming the variables have suitable types.

(i) while (*x++!=’\0’)..

(ii) a = b = c == 0

(iii) a = b == c = 0

(iv) a = b = c == d && e || f || g

(i) while (*x++!=’\0’)..

while ((*(x++)) != ’\0’)..

This is correct

(ii) a = b = c == 0

a = (b = (c == 0))

This is correct

(iii) a = b == c = 0

a = ((b == c) = 0)

Illegal. You cannot assign a value to an expression

(b==c).

(iv) a = b = c == d && e || f || g

a = (b = ((((c == d) && e)|| f)|| g))

This is correct.

4

	Conversions, casts, and operator precedence
	Arithmetic expressions
	Types of constants
	Casts
	Casts and pointers
	Routines
	Assignment operators
	& operator and * operator
	Operator precedence

