6 Command line arguments

Command-line processing uses text rather than point-and-click. For example, to edit a file
commandline.c using the vi or vim visual editor:

vi commandline.c

This invokes the vi editor to create or edit a file named commandline.c
This was done, and the result is:

// file commandline.c
#include <stdio.h>
#include <stdlib.h> // needed for atoi below

int main (int argc, char * argv[])

{
int day, month, year;
day = atoi (argv[1]); // atoi converts string to integer
month = atoi (argv([2]);
year = atoi (argv[3]);
printf ("The date is %d/%d/%d\n", day,month,year);
+

Compile and execute:

% gcc commandline.c
% a.out 27 9 21

The date is 27/9/21
/A

Rationale. When
%a.out 27 9 21

is run, the numbers 27, 9, 21, are command-line arguments. They are copied to the program
as character strings. So

The function atoi() converts string to int.

argc is 4, the number of arguments.
argv[0] is "a.out" --- argv[0] is the name of the program being run.

argv[1] is "27" and atoi(argv[1]) is 27, assigned to the variable ‘day.’
argv([2] is "9" and atoi(argv[1]) is 9, assigned to the variable ‘month.’
argv[3] is "21" and atoi(argv[1]) is 21, assigned to the variable ‘year.’

	Command line arguments

