
6 Command line arguments

Command-line processing uses text rather than point-and-click. For example, to edit a file

commandline.c using the vi or vim visual editor:

vi commandline.c

This invokes the vi editor to create or edit a file named commandline.c

This was done, and the result is:

// file commandline.c

#include <stdio.h>

#include <stdlib.h> // needed for atoi below

int main (int argc, char * argv[])

{

int day, month, year;

day = atoi (argv[1]); // atoi converts string to integer

month = atoi (argv[2]);

year = atoi (argv[3]);

printf("The date is %d/%d/%d\n", day,month,year);

}

Compile and execute:

% gcc commandline.c

% a.out 27 9 21

The date is 27/9/21

%

Rationale. When

%a.out 27 9 21

is run, the numbers 27, 9, 21, are command-line arguments. They are copied to the program

as character strings. So

The function atoi() converts string to int.

argc is 4, the number of arguments.

argv[0] is "a.out" --- argv[0] is the name of the program being run.

argv[1] is "27" and atoi(argv[1]) is 27, assigned to the variable ‘day.’

argv[2] is "9" and atoi(argv[1]) is 9, assigned to the variable ‘month.’

argv[3] is "21" and atoi(argv[1]) is 21, assigned to the variable ‘year.’

1

	Command line arguments

