
10 Arrays and initialisation

• Arrays in C are declared in the following way:

int a[100]; double b[200];

a is declared as an array of 100 ints,

and b as an array of 200 doubles.

• The elements of the array a are

a[0], a[1], a[2], ..., a[99]

A peculiarity of C. Array indexing always begins at 0, so the last element in the array
a is a[99].

• The notation can be confusing.

int a[10]; // declares a to be an array of 10 ints

printf("%d\n", a[5]); // the sixth entry in the array a.

• But in general, an array of int/double is equivalent to a list of several int/double variables.

10.1 Example reading an array from the keyboard

#include <stdio.h>

main()

{

double a[1000];

int count; double x;

count = 0;

while (scanf("%lf", &x) == 1)

{

if (count < 1000) // ignores excess numbers

{

a[count] = x;

count = count+1;

}

}

printf("%d numbers read\n", count);

int i;

for (i=0; i<count; i=i+1)

{ printf(" %f", a[i]); }

printf("\n");

printf("and in reverse order\n");

for (i=count-1; i>=0; i=i-1)

1

{ printf(" %f", a[i]); }

printf("\n");

}

% gcc read-array.c

% cat da3

3.14 15.926 5.81 2 3.4

5 numbers read

3.140000 15.926000 5.810000 2.000000 3.400000

and in reverse order

3.400000 2.000000 5.810000 15.926000 3.140000

%

10.2 Initialisation

A declaration can include an initial value. Otherwise the value is undefined (garbage). Or
maybe not garbage with modern compilers. Here is an example from a rather old version of
gcc:

% cat garbage.c

#include <stdio.h>

main()

{ int x;

printf("%d\n", x);

}

% gcc garbage.c

% a.out

-1217028108

Declaring with initialisation:

int x = -345;

this is equivalent to

int x; x = -345;

Declaring with initialisation saves keystrokes, but it should be treatedwith caution. There
are two reasons. One is that you might base some part of the program on the assumption that
x held its initial value, forgetting that you had already changed it. The other is that people
ignorant of C programming think that int is required in every assignment to x, as with

int x = 4; // As a declaration, correct

int x = 5; // as an assignment, utterly wrong.

A great strength of C is an efficient way to initialise arrays. This is where an array is used
as a table of values; for example, the lengths of the months in a non-leap year.

int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};

2

10.3 Character strings

A variable taking single character (actually, single byte) values is declared this way:

char x;

char y = ’z’;

char newline = ’\n’;

• An array of characters is often called a character string.

• Usually, a character string is used to store a piece of text.

• Initialisation is possible. For example,

char hello[6] = "hello";

• Important. First, this is possible as initialisation, but for technical reasons it is impos-

sible as assignment. For example, the following statements are incorrect.

char hello[6];

hello = "hello"; // This is not a valid C statement

• Important. Secondly, ”hello”, which is called a character string constant, fits into 6
characters, not 5. The following is valid C code, but it is fatally flawed:

char hello[5] = {’h’,’e’,’l’,’l’,’o’};

It is wrong because the end of the string is not clearly marked. The end of a character
string is always marked by a null character. This is written in C as ’\0’, a byte consisting
of 8 zero-bits, or (00)16.

1

The following are both correct, and both have the same effect.

char hello_1[6] = "hello";

char hello[6] = {’h’,’e’,’l’,’l’,’o’,’\0’};

• A useful initialisation is

char hex_digit[17] = "0123456789abcdef";

10.4 Danger signals

C allows an array of given size to be created, but then pays no attention to the

size. This is the source of most ‘segmentation fault’ errors in C programming, and

far worse. One must be very careful.

For example,

char hello[5] = "hello";

will compile, but it is an instance of array overflow. Six characters are initialised, and the last
(null character) is beyond the range of the array.

1It differs from the ASCII code of ’0’ which is 48 or (30)16.

3

10.5 Some fancy initialisations

It is possible to have an array of character strings of different lengths, initialised. For example,

char * weekday[7]={"Su","Mo","Tu","We","Th","Fr","Sa"};

All right, these character strings are the same length, but they needn’t be.
What does this mean?

char * weekday[7]

says that weekday[] is an array of 7 character strings. The asterisk indicates character string
in a sense which can’t be explained now, but will be explained later.

Also,

char * month_name[12] =

{ "January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"

};

They are character strings of different lengths.

10.6 Format item for character strings

In printf(), the correct format item for

• a character is %c, and for

• a character string it is %s.

Fior example, with month name[] declared as above,

int i;

for (i=0; i<12; i = i+1)

{ printf("%s ", month_name[i]); // no newline!

if (i == 5)

{ printf("\n"); }

}

printf("\n"); // partial code fragment

...

% a.out

January February March April May June

July August September October November December

%

4

	Arrays and initialisation
	Example reading an array from the keyboard
	Initialisation
	Character strings
	Danger signals
	Some fancy initialisations
	Format item for character strings

