14 2-dimensional arrays

We have seen arrays of int, double, char etcetera. In C, we can have 2-dimensional arrays,
such as

double al3][4];

(You can also have char b[4] [56] [6] [2] etcetera.)

C treats a as an array of arrays. To be precise, a is an array of 3 arrays each of size 4.

Most of the time we use 2-dimensional arrays for matrix calculations. From this point of
view, a is a matrix with 3 rows and each row is has 4 entries: in other words, a 3 x 4 matrix,
3 rows and 4 columns.

Continuing with the matrix a, the expression

al2] [1]

is a particular double-precision number, that in the third row and second column. (Remember
that indexing begins at zero.)
Put another way, a[2] is an array of doubles, and a[2] [1] is the second entry in that array.
For the element in the i-th row and j-th column of an array a[m] [n],

Given
(type) alm][n];

The notation in C for array entries is unlike many
programming languages. It is

NOT ali,j]

NOR a(i,j)

but the j-th element in ali]:
ali] [j]

It isin range if 0 <i<m and 0 < j < n.

Example. Write a routine to read in a matrix and a vector and multiply them.

A matrix is a 2-dimensional array of double, say, and a vector is a compatible 1-dimensional
array of double. The input will include the dimensions of the arrays as well.

We shall use the following input

Q0 O N
©O© O W
~

10

WD N oW

-14 -5

The matrix dimensions are 3 x 4, and the vector’s is 4.

#include <stdio.h>
void multiply(double a[3][4], double b[4], double c[3])
{ int i,j;
double sum;
for (i=0; i<3; ++i)
{ sum = 0;
for (j=0; j<4; ++j)
{ sum += alil[j] * b[j] ; };
c[i] = sum;
}
}

void print_matrix (double a[3][4])
{ int i, j;
for (i=0; i<3; ++i)
{ for (j=0; j<4; ++j)
{ printf(" %8.3f", alil[j1);
}
// NOTICE the customised formatting: 3 decimal places
// padded if necessary to 8 characters.
printf("\n");
}
}

void print_3vector (double b[3])
{ int j;
for (j=0; j<3; ++j)
{ printf(" %8.3f", b[jl1); }
printf("\n");
}

void print_4vector (double b[4])
{ int j;
for (j=0; j<4; ++j)
{ printf(" %8.3f", b[jl); }
printf("\n");
}

int main()
{ double a[3][4], b[4], c[4];
int ell,m,n;
int 1i,j;
scanf ("%d %d", &ell, &m); //height and width of a

2

for (i=0; i<ell; i = i+1)
for (j=0; j<m; j = j+1)
{ scanf("}1f", &(alill[j] D)) ; }

scanf ("%d", &n); //height of b

// no check that height of b is width of a.
for (j=0; j<n; j = j+1)
{ scanf("%1f", &(b[j])) ; }

printf("matrix\n"); print_matrix (a);
printf("vector\n"); print_4vector (b);
multiply(a,b,c);

printf ("product \n"); print_3vector (c);

1.000 2.000 3.000 4.000
4.000 5.000 6.000 7.000
7.000 8.000 9.000 10.000
vector
3.000 -1.000 4.000 -5.000
product
-7.000 -4.000 -1.000

14.1 Arrays as routine arguments

In passing arguments to the multiply routine
void multiply(double a[3][4], double b[4], double c[3])

the arguments are copied from the main program.

If an argument were ‘simple,” such as a single int, then no change within the routine would
affect the value of the corresponding variable in the main routine. But here the result of the
multiplication is passed back to the main program through the argument c. How?

The answer is: the value of an array is the address of its first entry. So what gets copied is
an address, and therefore the results can be transmitted to the calling routine.

In the jargon of programming languages:

int x[15]; \ int | int | int | int un

T A+4 A48 A+12 A+16
A

B (possibly A+60)

B+8 B+16

double a[3][4]; double | double | double | double
B+32 | double | double | double | double
B+64 | double | double | double | double

B+80

Figure 1: Array-to-memory mappings

e Simple (non-array) arguments are call-by-value,

e Array arguments are effectively call-by-reference.

Another example of call-by-reference:
scanf ("%d", &x)

the address of x is passed, and the value scanned will be stored in x.

14.2 Storage mapping functions

Given

int x[15];
double al[3][4];

the ‘value’ of x is the address of its first element. The arrangement of the array entries in
memory is illustrated in Figure[Il The label A is the address of the first entry in x. Under the
assumption that a begins immediately after x, B = A+60.

This is because x is an array of 15 ints, each int is 4 bytes, so the size of the array is 60
bytes. Hence B=A+60 if a comes immediately after x.

14.3 Address of an entry in a 1-dimensional array
Let

e A = address of first element of x[i], in bytes. Suppose A=1234.
e Let w be the size of each array entry, in bytes: 4 in the above example.

e Let n be the size of the array (in ints), 15 in the above example.

The size of x is 4 x 15 = 60 in bytes.

The i-th element of x has address
A+ixw

For example, given A and w as above, the address of x[14] is 1234 + 4 x 14 = 1290.

The address of x[15] is 1294. The address is calculated whether or not i is in range: 15
is not in range.

The address of x[-4] is 1218.

14.4 Address of an entry in a 2-dimensional array

Suppose a is an m x n array. Let B be the address of its first entry, and let w be the size of
each array entry. Given the example

double al[3][4];

let us again suppose that B = A + 60 = 1294.

First give the value of a[i].

Answer. Viewing a as an array of m ‘rows,” and each row has n entries, the size in bytes
of each row is n x w. The value of a[i], which is an address, is

B+ixnxw

This is the address of the first element of the -th row.
Now the address (not the value) of a[i] [j]: it is

C+jxw
where C' is the address of the first entry in a[i]:
B+ixnxw+jXxXuw.
For example, the address of a[2] [1] is
1294 +2 x4 x 8+ 1 x 8 = 1366.

Odd question: for what value of i does x[i] have the same address as a[2] [1]7
Answer. That is,

1234 +4 x 1 = 1366
4 x1=132
1 =33

Of course, 7 is out of range.

14.5 No bulk assignments, and pointers previewed

The value of an array a is an address. After the 3rd quiz we shall study other kinds of variable
whose value is an address: they are pointers.
In fact,

int main (int argc, char * argv[])

declares argv to be an array of pointers. More about this later.
But you cannot assign the value of one array to another.

int a[10], b[10];
a = b;

is an error, because the value of b is a constant address, as is the value of b.

	2-dimensional arrays
	Arrays as routine arguments
	Storage mapping functions
	Address of an entry in a 1-dimensional array
	Address of an entry in a 2-dimensional array
	No bulk assignments, and pointers previewed

