16 Allocating 1-dimensional and 2-dimensional arrays
It is easy to create a 1-dimensional array of doubles, say:
double * a = (doublex*) calloc (n, sizeof (double));

The sizeof () function, or pseudo-function since its argument is a C type, gives the number
of bytes occupied. For example, sizeof (int) is 4, and sizeof (int*) is 8 on 64-bit machines.
The above code allocates n * sizeof (double) or 8n bytes.

To allocate something which resembles a 2-dimensional array of doubles, the type should
be

double ** a;
Counstruction is not obvious. Now

If a is to resemble an m x n array,

a should be an array of m ‘rows,’ so
the correct allocation is
a = (double *x*)

calloc (m, sizeof (double *));

Then each ‘row’ a[i] should be an array of n doubles.
alil = (double*) calloc (n, sizeof (double));
Putting these together,

double * make_vector (int n)

{
double * b = (doublex*) calloc (n, sizeof(double));
}
double ** quasi_2d (int m, int n)
{
double ** mat = (double **) calloc (m, sizeof (doublex));
int i;
for (i=0; i<m; ++i)
{
mat[i] = (double *) calloc (n, sizeof (double));
}
return mat;
}

16.1 Revised matrix-by-vector program

#include <stdio.h>
#include <stdlib.h>

~
¥ OX X XK X K X K X KX X X K X K X K X X X X ¥ X X X* X *

*
~

This program is an improvement on

earlier versions which multiply a matrix

by a vector, first a 3x4 matrix by a 4-vector,
and the 6th programming assignment which work
with 2-dimensional arrays of fixed size, 10x10.

This program uses calloc() first to construct
a vector of n doubles, and then to construct
a ‘quasi-2-dimensional’ array. It inputs

and multiplies them and prints the product.

Construction of the ‘quasi-2-dimensional’ array
is not obvious, but once it is done one can
take a ‘quasi-matrix’ stored in a variable a,
declared double ** a, and write ali] [j] as if

a was an ordinary 2-dimensional array.

One other point is that the product routine in earlier
versions has been replaced by a product function which
returns the matrix by vector product. The final

print statement calls and prints the product in one
statement.

It is necessary for these routines to be passed
information about the dimensions (height and width
of matrices, size of vectors).

double * make_vector (int n)

{

}

double * b = (doublex) calloc (n, sizeof(double));

double ** quasi_2d (int m, int n)

{

double ** mat = (double **) calloc (m, sizeof (doublex));

for (i=0; i<m; ++i)

mat[i] = (double *) calloc (n, sizeof (double));
}

return mat;

}

double * product(int m, int n, double ** a, double *b)
{

int i,j;

double sum;

double * ¢ = make_vector (n);

for (i=0; i<m; ++i)
{
sum = O;
for (j=0; j<n; ++j)
{ sum += alil[j] * b[j] ; }
c[i] = sum;
}

return c;

void print_matrix (int m, int n, double ** a)
{
int i, j;
for (i=0; i<m; ++i)
{
for (j=0; j<m; ++j)
{ printf (" %8.3f", alil[j1); %}
printf("\n");

}
}
void print_vector (int n, double *b)
{
int j;
for (j=0; j<n; ++j)
{ printf(" %8.3f", bl[j1);
printf("\n");
}

int main()

{
double **a, *b, *c;
int ell,m,n;

int 1i,j;
scanf ("%d %d", &ell, &m); //height and width of a
a =quasi_2d (ell, m);

for (i=0; i<ell; i = i+1)
for (j=0; j<m; j = j+1)
{ scanf("%1f", &(alil[j])) ; %}

scanf ("%d", &n); //height of b
// no check that height of b is width of a.
b = make_vector (n);
for (j=0; j<m; j = j+1)
{ scanf("%1f", &(b[j]1)) ; }

// a is equivalent to an ell by m matrix,

// and b is a vector of height n,

// and the product function assumes that b has

// height m without checking.
printf("matrix\n"); print_matrix (ell,m, a);

printf("vector\n"); print_vector (n, b);

printf ("product \n");
print_vector (ell, product (ell,m, a, b));

	Allocating 1-dimensional and 2-dimensional arrays
	Revised matrix-by-vector program

