
16 Allocating 1-dimensional and 2-dimensional arrays

It is easy to create a 1-dimensional array of doubles, say:

double * a = (double*) calloc (n, sizeof (double));

The sizeof() function, or pseudo-function since its argument is a C type, gives the number
of bytes occupied. For example, sizeof(int) is 4, and sizeof(int*) is 8 on 64-bit machines.
The above code allocates n * sizeof(double) or 8n bytes.

To allocate something which resembles a 2-dimensional array of doubles, the type should
be

double ** a;

Construction is not obvious. Now

If a is to resemble an m x n array,

a should be an array of m ‘rows,’ so

the correct allocation is

a = (double **)

calloc (m, sizeof (double *));

Then each ‘row’ a[i] should be an array of n doubles.

a[i] = (double*) calloc (n, sizeof (double));

Putting these together,

double * make_vector (int n)

{

double * b = (double*) calloc (n, sizeof(double));

}

double ** quasi_2d (int m, int n)

{

double ** mat = (double **) calloc (m, sizeof (double*));

int i;

for (i=0; i<m; ++i)

{

mat[i] = (double *) calloc (n, sizeof (double));

}

return mat;

}

1

16.1 Revised matrix-by-vector program

#include <stdio.h>

#include <stdlib.h>

/*

* This program is an improvement on

* earlier versions which multiply a matrix

* by a vector, first a 3x4 matrix by a 4-vector,

* and the 6th programming assignment which work

* with 2-dimensional arrays of fixed size, 10x10.

*

* This program uses calloc() first to construct

* a vector of n doubles, and then to construct

* a ‘quasi-2-dimensional’ array. It inputs

* and multiplies them and prints the product.

*

* Construction of the ‘quasi-2-dimensional’ array

* is not obvious, but once it is done one can

* take a ‘quasi-matrix’ stored in a variable a,

* declared double ** a, and write a[i][j] as if

* a was an ordinary 2-dimensional array.

*

* One other point is that the product routine in earlier

* versions has been replaced by a product function which

* returns the matrix by vector product. The final

* print statement calls and prints the product in one

* statement.

*

* It is necessary for these routines to be passed

* information about the dimensions (height and width

* of matrices, size of vectors).

*/

double * make_vector (int n)

{

double * b = (double*) calloc (n, sizeof(double));

}

double ** quasi_2d (int m, int n)

{

double ** mat = (double **) calloc (m, sizeof (double*));

int i;

for (i=0; i<m; ++i)

{

2

mat[i] = (double *) calloc (n, sizeof (double));

}

return mat;

}

double * product(int m, int n, double ** a, double *b)

{

int i,j;

double sum;

double * c = make_vector (n);

for (i=0; i<m; ++i)

{

sum = 0;

for (j=0; j<n; ++j)

{ sum += a[i][j] * b[j] ; }

c[i] = sum;

}

return c;

}

void print_matrix (int m, int n, double ** a)

{

int i, j;

for (i=0; i<m; ++i)

{

for (j=0; j<n; ++j)

{ printf(" %8.3f", a[i][j]); }

printf("\n");

}

}

void print_vector (int n, double *b)

{

int j;

for (j=0; j<n; ++j)

{ printf(" %8.3f", b[j]); }

printf("\n");

}

int main()

{

double **a, *b, *c;

int ell,m,n;

3

int i,j;

scanf ("%d %d", &ell, &m); //height and width of a

a = quasi_2d (ell, m);

for (i=0; i<ell; i = i+1)

for (j=0; j<m; j = j+1)

{ scanf("%lf", &(a[i][j])) ; }

scanf ("%d", &n); //height of b

// no check that height of b is width of a.

b = make_vector (n);

for (j=0; j<n; j = j+1)

{ scanf("%lf", &(b[j])) ; }

// a is equivalent to an ell by m matrix,

// and b is a vector of height n,

// and the product function assumes that b has

// height m without checking.

printf("matrix\n"); print_matrix (ell,m, a);

printf("vector\n"); print_vector (n, b);

printf("product \n");

print_vector (ell, product (ell,m, a, b));

}

4

	Allocating 1-dimensional and 2-dimensional arrays
	Revised matrix-by-vector program

