
UNIVERSITY OF DUBLIN MA1266 -1

TRINITY COLLEGE

Faculty of Science

school of mathematics

JF Maths/TP/TSM Trinity Term 2018

Mathematics 1266: C programming

Thursday, May 3 Goldsmith Hall? 09:30 — 11:30

Prof. Colm Ó Dúnlaing

Attempt 3 questions

Show all work.
Remember to fold down and glue the flap on every answer

booklet.

1. (a) Convert −3141 to a short integer, giving the answer in hex, little endian.
Answer
bb f3 little endian

(b) Given

char hello[] = "hello";

short *x = (short *) hello;

Convert x to decimal. Note: the ascii codes for a . . . z are 97 . . . 122.
Answer

string hello hex 68 65 6c 6c 6f 00

(*x) is the short int represented by the first

four hex digits: 68 65, little endian.

Big-endian would be: 65 68 (all in hex).

This is a positive number (high-order bit is zero).

Its value is its face value,

6 * 16^3 + 5 * 16^2 + 6 * 16 + 8

which is 25960.

2 MA1266 -1

A slightly different calculation:

(6*16 + 5)*16^2 + (6*16 + 8)

6*16 + 5 = 101, the ascii value of ’e’,

and 6*16+8 = 104, the ascii value of ’h’:

101*256 + 104 = 25960

(c) Given

int a[10];

double b[3][3];

char * c = (char*) a;

Assume that a begins at address 1000 and b follows a immediately. The ad-
dress of b[1][2] coincides with the address of a[i] for some i. Calculate i.
Answer

Address of b[1][2] = 1000 + 40 + 3 * 8 + 2 * 8 = 1120

Correction: the value is 1080, not 1120.

The address of a[i] is 1000 + 4 * i.

Therefore 4*i = 80 and i = 20.

2. (a) Write a recursive routine void print_binary(int n) which prints n in bi-
nary, at ‘face value.’. For example, with n==5, the output should be 101. (You
may assume that n > 0, and it is unnecessary to print a newline.)
Answer

#include <stdio.h>

void print_binary (int n)

{

if (n > 0)

{

int x = n/2, y = n%2;

print_binary (x);

printf("%d",y);

}

3 MA1266 -1

}

main()

{

print_binary(5); printf("\nGoodbye\n");

}

(b) Write an efficient recursive function

double power (int n, double a);

which returns a
n. You may assume n ≥ 0. Using recursion rather similar to

that in print_binary(), the function uses relatively few multiplications.
Answer

#include <stdio.h>

double power (int n, double a)

// returns the n-th power of a, given n>=0

{

if (n == 0)

return 1;

else

{

int y = n%2;

int x = n/2;

double c = power (n/2, a);

if (y == 0)

return c*c;

else

return c*c*a;

}

}

main()

{

double b = power (5, 3);

printf("3^5 is %f\n", b);

}

3. (a) Carefully simulate the following program.

4 MA1266 -1

#include <stdio.h>

int xxx (int m)

{ if (m <= 10)

return m;

else

{ int x = m%10, y = m/10;

return x - xxx (y);

}

}

main()

{ int m = 123;

int z = xxx (m);

printf("m is %d, m-xxx(m) is %d\n", m, m-z);

}

For your information: z is congruent to m mod 11.

Answer

xxx, m == 123

xxx, m == 12

xxx, m == 1

xxx() returns 1 at line 1

xxx(12) returns 2 - xxx(1) = 1 at line 3

xxx(123) returns 3 - xxx(12) = 2 at line 3

m is 123, m-xxx(m) is 121

(b) Write a complete C program which reads lines from input using fgets(), stores
copies of these lines in an array char * string[1000], and prints them in
reverse order, and separated by blank lines. For example example,

| should produce

a quick | fox

brown |

fox | brown

|

| a quick

You can assume that at most 1000 lines will be read.

Answer

5 MA1266 -1

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

main()

{

char * string[1000];

int n = 0;

char buffer[200];

while (fgets (buffer, 200, stdin) != NULL)

{

string[n] = malloc (strlen (buffer) + 1);

snprintf(string[n], strlen(buffer)+1, "%s", buffer);

++n;

}

int i;

for (i=n-1; i >= 0; --i)

{

if (i < n-1)

printf("\n");

printf("%s", string[i]);

}

}

4. (a) Write a routine void transpose(double a[2][2], double b[2][2]) which
copies to b the transpose of a. You may assume that a and b are different ar-
rays.

(b) Use it in a careful simulation of the following (which violates the assumption)

main()

{ double a[2][2] = {{1,2},{3,4}};

transpose (a,a);

printf("%f %f\n%f %f\n", a[0][0], a[0][1], a[1][0], a[1][1]);

}

Answer

#include <stdio.h>

void transpose (double a[2][2], double b[2][2])

6 MA1266 -1

{

b[0][0] = a[0][0]; b[1][1] = a[1][1];

b[0][1] = a[1][0]; b[1][0] = a[0][1];

}

int main() etcetera

gcc...

a.out (the simulation is not shown here, but this is

the result).

1.000000 3.000000

3.000000 4.000000

(c) Write a routine void invert(double a[2][2], double b[2][2]) which
stores the inverse of a in b. You may assume that a is invertible and b is a
different array. Recall

[

u v

w x

]

−1

=
1

ux− vw

[

x −v

−w u

]

.

Answer

void invert (double a[2][2], double b[2][2])

{

double det = a[0][0]*a[1][1] - a[1][0]*a[0][1];

b[0][0] = a[1][1] / det;

b[1][1] = a[0][0] / det;

b[0][1] = - a[0][1] / det;

b[1][0] = - a[1][0] / det;

}

This has been tested as follows:

A:

1 2

3 4

Inverse:

-2 1

1.5 -0.5

Product:

1 0

0 1

7 MA1266 -1

c© UNIVERSITY OF DUBLIN 2021

