
Mathematics U11601: C programming handbook
Last update September 26, 2021

1 Header files
#include <stdio.h>

printf, scanf, fgets, snprintf, fopen, fclose

#include <stdlib.h>

atoi, atof, exit, malloc, calloc, free, abs, fabs, srand48, drand48

#include <string.h>

strlen, strcmp, strncmp

#include <math.h>

sqrt, sin, etc. NOTE: gcc requires -lm

2 Main program
int main (){...} or

int main (int argc, char * argv[]){...}

3 Files and input/output
fopen (file_name_string, "r/w/a");

returns a file pointer value

fclose (file); Essential for writeable files.

standard files: stdin, stdout, stderr.

printf ("format string", item_1, ...);

scanf ("format string", item_1, ...);

returns a value; item_1 ,... MUST BE addresses

fgets (buffer, size, input file);

returns a value; reads a line of text.

fscanf(file,)

fprintf(file, ...);

1

3.1 Format control items
printf, snprintf format control items %d %c %f %g %s

These are in the simplest form.

The %g format control item will choose either %f format

or %e format (scientific notation, which we shall not study),

whichever fits better.

Also, it prints numbers like 1.0, which have no fractional part,

as integers without the decimal point. This can be useful.

printf("%f\n", 1.0) prints 1.0000000

printf("%g\n", 1.0) prints 1

For printf, one

can control the field width, number of digits, etcetera.

For scanf, one MUST use %lf when inputting a double-precision variable.

In printf and scanf, format control items are matched with items to be printed. It is up to the
programmer to make sure these are correct.

printf("%d\n",1.0); prints

472707256

3.2 snprintf
snprintf(target string, length bound, "format string", item_1, ...);

This doesn’t write to an output file; it is just a way of arranging data in a character string; it means
‘string bounded length quasi-printf.’

4 Arithmetic expressions
+ - * / %

‘bodmas’ precedence rule brackets, division, multiplication,

addition, subtraction.

also abbreviations like x++, --y, x += 4, y /= 10

Integer division rounds towards zero. This has a knock-on effect with the remainder operator %.
If a and b are positive integers, then a/b is rounded down to the nearest integer. If a < 0 and

b > 0, both integers, then a/b is rounded up to the nearest integer. This is ‘rounding towards zero.’
Ignore the case b < 0: it is confusing and not useful.
If a and b are integers, and b > 0, then

a = (a/b) ∗ b+ a%b

2

It follows that a%b is nonnegative if a is nonnegative and it non-positive if a is non-positive.
Thus the remainder can be negative, which differs from mathematical convention.
Assignment statement:

x = 2 * y + x;

Variant

x += 2*y; +=,*=, etc, are ‘assignment operators.’

5 Equality versus assignment
x = 1;

is an assignment statement. It assigns the value 1 to x.

x == 1

is a condition, true when x is 1 and false otherwise.

If one forgets this, and writes = instead of ==, it may

cause strange program errors.

6 Control flow
logical connectives

< <= == >= > != && || !

No boolean values: integers; zero false,

nonzero true.

for (i=0; i<10; ++i)

{ sum = sum+a[i]; }

while (scanf ("%d", &n) == 1)

{ }

Don’t use ‘!= 0’

because some systems return -1 at end of data.

ok = (n == 10);

if (ok && a[9] < 0)

if (a[8] >= 0)

{ lastvalue = a[8]; }

else

{ ok = 0; }

two ifs: is the indentation correct?

3

7 Data types
Basic:

char character (1 byte)

char [..] character string

short

int

float

double

address (indicated by *)

8 Arrays
int a[15]; array of 15 ints, starting address in a.

double b[3][4] 2-dimensional array of 3x4 doubles,

starting address in b.

In C, arrays and pointers are similar.

9 Names for variables (and functions and types)
These names are called identifiers. Any nonempty string of letters, digits, and underscore is a valid
identifier, provided it doesn’t begin with a digit.

Small letters and capital letters are different.

int aB, Ab, _aB, __Ba_a;

is correct in C, though of course one should not use weird or eccentric names for variables.
In naming variables it is common to use small letters, reserving capital letters for the names of

structure types.

9.1 Mixed types
• Constants have implicit types. So, 1.0 is implicitly double, 1 is int.

• With expressions of mixed type, conversion is applied so that types match. Actually, ‘promo-
tion’ occurs. Where int and double are to be combined, the int is converted, so we get the
combination of two doubles.

• In C, this is very unusual, char types are considered as 8-bit integer and if necessary converted
to int. On Intel machines, it is even odder: sign extension is applied, so if a char has high-order
bit 1, it converts to a negative int.

4

10 Operator precedence
Level 1 LR [], ., ->, postfix ++, --, has value and effect

2 RL !, * (dereference), & (address), casts, sizeof,

prefix ++ --, has value and effect

3 LR *, /, % arithmetic

4 LR +, - arithmetic

5 LR <, <=, >=, >

6 LR ==, !=

7 LR &&

8 LR ||

9 RL =, +=, *=, %=, etcetera: assignment operators

Assignment operators have value and effect

11 Functions and subtroutines, and prototypes
type name (type arg1, type arg2, ...){..}

for a function with given name. type: int, double, etc.

void name (type arg1, type arg2, ...){..}

for a subroutine

Prototypes give the return type (which can be void)

and the arguments, while the full function or routine

is written somewhere else. For example

void printhex (int n, char v[]);

describes the routine, without giving the routine

body. A semicolon replaces the part between braces,

{...}

Arguments are always call-by-value, though because of C treating arrays as pointers, arrays are ef-
fectively passed by reference.

12 Structures
typedef struct { double re, im; } COMPLEX;

COMPLEX a = {1, 2};

COMPLEX * b = (COMPLEX*) calloc(1, sizeof(COMPLEX));

COMPLEX * product (COMPLEX *a, COMPLEX *b);

5

typedef struct { int m,n; double ** entry; } MATRIX;

MATRIX a, *b;

13 Dynamic memory allocation
for example

COMPLEX * new = (COMPLEX *) calloc (1, sizeof (COMPLEX));

A full example, where memory is allocated and a copy made

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

main()

{

char hello[] = "hello";

int size = strlen (hello) + 1; // room for null character

char * copy = (char*) calloc(1, size);

snprintf(copy, size, "%s", hello);

printf("Original %s\n", hello);

printf("Copy %s\n", copy);

}

% a.out

Original hello

Copy hello

14 Random number generators
Linear congruential

Xn+1 = aXn + c mod N

lrand48() % k for random numbers 0..k-1? Not

recommended if k is even with a linear congruential

generator, but it seems not to matter nowadays.

(int) (drand48() * k) is recommended.

srand48() to set the seed. ONCE ONLY. Repetitions will

destroy randomness.

Setting seed from clock:

6

#include sys/time.h

struct timeval tv;

gettimeofday (& tv, NULL);

srand48 (tv.tv_usec);

7

	Header files
	Main program
	Files and input/output
	Format control items
	snprintf

	Control flow
	Data types
	Arrays
	Names for variables (and functions and types)
	Arithmetic expressions
	Mixed types

	Operator precedence
	Functions and subtroutines, and prototypes
	Structures
	Dynamic memory allocation
	Random number generators

