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This is an informal review of 20th century solutions to Cantor’s

Continuum Hypothesis, paying attention to the ‘formalist’

position, namely, that the existence of sets is irrelevant, — i.e.,

the only requirement is that Set Theory be consistent.

Breakdown:

• The formalist position, as described by Paul Cohen.

• Some number theory and the Heap paradox of Eubulides.

• Cantor’s Set Theory, with its different orders of infinity,

Cantor’s paradox, and the Continuum Hypothesis (CH).

• Gödel’s construction of ‘makeshift models’ (my phrase).

This has something to say to the formalists.

• Inner models and Gödel’s proof that CH is consistent with

Set Theory.

• The minimal model, forcing, and Cohen’s proof that CH is

independent of Set Theory.

• Does Leopold Bloom exist?
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The formalists, according to Cohen

This talk is concerned with the formalist approach to

mathematics, and its opposite, call it Idealist or Platonist or

whatever. They are described in Paul Cohen’s classical book on

the Continuum Hypothesis. The formalists say that

. . . mathematics should be regarded as a purely

formal game played with marks on paper, and the

only requirement this game need fulfil is that it

does not lead to an inconsistency.

This defensiveness was prompted by the discovery of internal

inconsistencies, such as Cantor’s Paradox (given later). When

Cohen added that

. . . most mathematicians are more or less idealists

in their view that sets actually exist,

he was describing himself.

There is little more to say explicitly about the

formalist/idealist division. But it is implicit in what follows.

Proofs are mentioned, and even shown, and it is clear that they

are much more than a game played with marks on paper.
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Some Number theory

This is about properties of natural numbers. The set N of

Natural Numbers is

N = {0, 1, 2, 3, . . .}

It is ALWAYS denoted N.

Properties of natural numbers can be proved using

mathematical induction. To prove that a property P (n) is

true for every n ∈ N, it is enough to prove two things:

• P (0), i.e., Zero has this property, and

•
P (n) =⇒ P (n + 1) :

whenever n has the property, so has n + 1.

Example. For every n,

n2 = 1 + 3 + 5 + . . . + (2n − 1)

that is, n2 equals the sum of the first n odd numbers.

• 02 is the sum of the first 0 odd numbers.

• Assuming n2 is the sum of the first n odd numbers, the

sum of the first n + 1 is

1 + 3 + . . . + 2n − 1 + 2n + 1

= n2 + 2n + 1 = (n + 1)2.
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The heap paradox

Eubulides used mathematical induction to show that a heap

of sand cannot exist.

• A single grain of sand is not a heap.

• If n grains do not make a heap, adding one grain doesn’t

create a heap.

Obviously, the natural number system does not say interesting

things about heaps of sand. I would say that a heap of sand

contains, for practical purposes, infinitely many grains.

This is a good excuse to admit infinite numbers.

Infinity is not always mysterious.

Infinite numbers are often easier to work with.
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Cantor’s Set Theory

Cantor invented a theory of sets in which infinite quantities

occur naturally. According to him, ‘a set is a collection of

things intuitively thought of as a whole.’

He invented ways in which sets could be considered to be of

equal size (cardinality), even if they were infinite.

Notation for cardinality:

|X|

is the cardinality of a set X. There is a smallest infinite

cardinal, which happens to be the cardinality of the natural

numbers. He called in ℵ0.

ℵ0 = |N|

Sets, such as the set of natural numbers, or the set of integers,

with this cardinality, are called countably infinite. Next

ℵ1

is the smallest cardinality bigger than ℵ0, and so on. . .
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Cardinality of the power set

The set of all subsets of a set X is written

PX

For example,

P{a, b} = {∅, {a}, {b}, {a, b}}

If |X| = n is finite then |PX| = 2n is bigger than X. Cantor

proved this for every infinite set X as well.

Theorem (Cantor) |X| < |PX| always.

Proof.

• Suppose that you had some scheme which matched with

every x ∈ X a subset f(x) of X.

• We must show that not every subset of X is matched with

an element of X.

• One can argue very simply that the set

S = {x ∈ X : x /∈ f(x)}

is not matched to any x ∈ X. Q.E.D.

Cantor’s Paradox is that

‘the set of all sets’

call it U , contains PU . It is absurd that |U | < |PU |.
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Cantor’s Continuum Hypothesis (CH)

R is the ‘real number continuum,’ including all negative

numbers,
√

2, π, and so on.

It can be proved that the number of subsets of N exactly

matches the number of real numbers, i.e.,

|R| = |PN|.

By Cantor’s Theorem,

|N| < |PN|

So PN is not countably infinite; therefore R is not countably

infinite.

Since |N| = ℵ0 and |PN| = |R|,

ℵ0 < |R|.

Recall that ℵ1 is the smallest cardinality bigger than ℵ0. It

follows that

ℵ1 ≤ |R|.

Cantor’s Continuum Hypothesis (CH) is

|R| = ℵ1
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Makeshift models

After about 50 years of effort by various mathematicians to

prove or disprove CH, Gödel showed in 1940 that CH is

relatively consistent. The argument is based on what I call

‘makeshift models.’

Theories have ‘models’ in the sense that N is a ‘model’ of

number theory.

Theorem (Gödel, c. 1930). Every consistent theory has a

countably infinite model.

His argument is based on

If you cannot disprove a statement A in a theory

T , then T + A (theory T plus assumption of A) is

consistent.
You keep going for countably many steps, adding more and

more assumptions, so they are all consistent. Eventually all the

assumptions made add up to a full description of a model (of

the original theory).

The model can be rather unnatural, as the only rule is to avoid

inconsistencies. Hence I call it a ‘makeshift model.’

The formalist position is weakened: the formalist is playing a

game with marks on paper. But if the game does not lead to

inconsistencies, then there does exist something whose

properties are being deduced. If it does, then the formalist is

wasting everybody’s time.

Paradox: if Set Theory is consistent (and it probably is!)

then there is a countable (makeshift) model of set theory.
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Relative consistency of CH

Gödel proved that the Continuum Hypothesis CH is relatively

consistent.

Idea: suppose that Set Theory is consistent.

• It has a ‘makeshift model’ V

• Gödel discovered how to extract a ‘submodel’ L of

‘constructible’ sets which is a model for set theory plus

CH.

(The details are extremely complicated.)
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Independence of CH

Cohen proved that the negation of CH is relatively consistent.

He began by assuming there exists a minimal standard

model M for set theory. This is a huge assumption. It is much

more than a makeshift model, same as N isn’t any old model of

number theory.

His justification was

all our intuition comes from our belief in the nat-

ural, almost physical, model of the mathematical

universe.

He wanted to transform M into a standard model N in which

CH is false. His method he called ‘forcing.’ He wanted to be

able to construct conditions which ‘forced’ certain things to

happen in N . He was successful, and indeed could construct

standard models in which |R| could be almost anything: for

example,

|R| = ℵ17

is relatively consistent. So much for the overview. This is not

easy!

Martin Davis always insisted that Cohen’s forcing method was

not something you got a feel for. If you want to learn it you

have to sit down and work through all the details. I must

confess I have yet to do so, but here’s an extract from his book

. . .
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Sampler from Cohen’s book. . .

8. P forces c1 = c2, where c1 ∈ Sα, c2 ∈ Sβ , γ = max(α, β),

α < β, if either γ = 0 and c1 = c2 as members of S0, or

γ > 0 and P forces ∀γx(x ∈ c1 ⇔ x ∈ c2).

9. P forces c1 ∈ c2 where c1 ∈ Sα, c2 ∈ Sβ , α < β, if P forces

A(c1) where A(x) = φβ(c2).

10. P forces c1 ∈ c2, where c1 ∈ Sα, c2 ∈ Sβ , α ≥ β and α 6= 0,

if for some c3 ∈ Sγ where γ = 0 if β = 0 and otherwise

γ < β, P forces ∀αx(x ∈ c1 ⇐⇒ x ∈ c2)&(c3 ∈ c2).

11. P forces c1 ∈ c2, where c1, c2 ∈ S0 if (. . . various possibilities

or . . . ) P explicitly mentions the condition c1 ∈ c2.
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Existence of Leopold Bloom

Paul Cohen was credited with having an uncanny intuition

about Set Theory.a Set theory is the creation of Cantor, so

Cohen had an uncanny intuition about Cantor’s ideas.

Perhaps Cantor’s ideas were so readily adopted because Cantor

had a knack for simplicity and clear description, which meant

his creation became common property. In this light, Cohen’s

remark that

all our intuition comes from our belief in the nat-

ural, almost physical, model of the mathematical

universe

is not quite so mystical. We conclude with a literary analogy.

In 1982 a plaque was erected in Clanbrassil Street to

commemorate its famous inhabitant, Leopold Bloom, born

1866. Neighbours did not remember him living there, not

surprisingly, as our only information about him is through

James Joyce’s Ulysses. However, his character, habits,

interests, experiences, etcetera, are clearly described, and when

people discuss Leopold Bloom they have no doubt that they

know him well.

He is consistent; therefore, perhaps, created by Mr. Joyce,

although of course he never existed, he continues to exist in

people’s minds.

aand a great deal more.
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