
§6 DESIGN BY CONTRACT AND ASSERTIONS 11

6 DESIGN BY CONTRACT AND ASSERTIONS

If classes are to deserve their definition as abstract data type implementations, they
must be known not just by the available operations, but also by the formal properties of
these operations, which did not yet appear in the preceding example.

The role of assertions

Eiffel encourages software developers to express formal properties of classes by
writing assertions, which may in particular appear in the following roles:

• Routine preconditions express the requirements that clients must satisfy
whenever they call a routine. For example the designer ofACCOUNT may wish
to permit a withdrawal operation only if it keeps the account’s balance at or above
the minimum. Preconditions are introduced by the keywordrequire .

• Routinepostconditions, introduced by the keywordensure , express conditions
that the routine (the supplier) guarantees on return, if the precondition was
satisfied on entry.

• A classinvariant must be satisfied by every instance of the class whenever the
instance is externally accessible: after creation, and after any call to an exported
routine of the class. The invariant appears in a clause introduced by the keyword
invariant , and represents a general consistency constraint imposed on all routines
of the class.

With appropriate assertions, the classACCOUNT becomes:

class ACCOUNTcreate
make

feature
... Attributes as before:

balance, minimum_balance, owner, open ...
deposit(sum: INTEGER) is

-- Depositsum into the account.
require

sum >= 0
do

add(sum)
ensure

balance =old balance + sum
end

INVITATION TO EIFFEL §612

The notationold expression is only valid in a routine postcondition. It denotes the
value theexpression had on routine entry.

Creation procedures

In its last version above, the class now includes a creation procedure,make. With the
first version , clients used creation instructions such ascreate acc1 to create accounts;
but then the default initialization, setting balance to zero, violated the invariant. By
having one or more creation procedures, listed in thecreate clause at the beginning of
the class text, a class offers a way to override the default initializations. The effect of

is to allocate the object (as with the default creation) and to call proceduremake on this
object, with the argument given. This call is correct since it satisfies the precondition;
it will ensure the invariant.

withdraw(sum: INTEGER) is
-- Withdrawsum from the account.

require
sum >= 0
sum <= balance – minimum_balance

do
add(–sum)

ensure
balance =old balance – sum

end
may_withdraw ... --As before

feature { NONE}
add ... -- As before

make(initial : INTEGER) is
-- Initialize account with balanceinitial .

require
initial >= minimum_balance

do
balance:= initial

end
invariant

balance >= minimum_balance
end -- class ACCOUNT

create acc1.make (5_500)

