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Invitation to Eiffel
1 WHAT MUST I KNOW FIRST?

This Invitation assumes that you have some experience of software development, but
that’s all. Previous exposure to object technology is not required. If you’ve had it, it will
help; but if it has all been to notations like UML or programming languages like C++
and Java, you should not let it guide your study of this Invitation. Although Eiffel shares
a number of properties with these other approaches, it takes a fresh path to object
technology, based on a small number of simple, far-reaching concepts.

Once you are familiar with the basic ideas you may want to try them with
EiffelStudio, which provides a direct implementation of the Eiffel concepts, available in
a completely portable way across Windows, Linux, many versions of Unix and VMS.

2 DESIGN PRINCIPLES

The aim of Eiffel is to help specify, design, implement and modify quality software.
This goal of quality in software is a combination of many factors; the language design
concentrated on the three factors which, in the current state of the industry, are in direct
need of improvements:reusability, extendibilityand reliability. Also important were
other factors such asefficiency, openness andportability.

This document is available both locally, as part of the ISE Eiffel delivery,
and on theeiffel.comWeb site, in both HTML and PDF versions. See the
list of introductory documents.
This is not an introduction to the EiffelStudio development environment.
Follow the preceding link for a Guided Tour of EiffelStudio (HTML or PDF).
You will also find there a detailed Eiffel Tutorial.

http://www.eiffel.com/doc/online/eiffel50/intro/
../index.html
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Reusability is the ability to produce components that may serve in many different
applications. Central to the Eiffel approach is the presence of predefined libraries such
as EiffelBase, and the language’s support for the production of new libraries.

Extendibility is the ability to produce easily modifiable software. “Soft” as
software is supposed to be, it is notoriously hard to modify software systems, especially
large ones.

Among quality factors, reusability and extendibility play a special role: satisfying them
means havingless software to write — and hence more time to devote to other
important goals such as efficiency, ease of use or integrity.

The third fundamental factor isreliability, the ability to produce software that is
correct and robust — that is to say, bug-free. Eiffel techniques such as static typing,
assertions, disciplined exception handling and automatic garbage collection are
essential here.

Three other factors are also part of Eiffel’s principal goals:

• The language enables implementors to produce highefficiencycompilers, so that
systems developed with Professional Eiffel may run under speed and space
conditions similar to those of programs written in lower-level languages.

• Ensuringopenness, so that Eiffel software may cooperate with programs written
in other languages.

• Guaranteeingportability by a platform-independent language definition, so that
the same semantics may be supported on many different platforms.

3 OBJECT-ORIENTED DESIGN

To achieve reusability, extendibility and reliability, the principles of object-oriented
design provide the best known technical answer.

An in-depth discussion of these principles falls beyond the scope of this
introduction but here is a short definition:

The following points are worth noting in this definition:

• The emphasis is on structuring a system around the types of objects it manipulates
(not the functions it performs on them) and on reusing whole data structures
together with the associated operations (not isolated routines).

• Objects are described as instances of abstract data types — that is to say, data
structures known from an official interface rather than through their representation.

Object-oriented design is the construction of software systems as
structured collections of abstract data type implementations, or “classes”.
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• The basic modular unit, called the class, describes one implementation of an
abstract data type (or, in the case of “deferred” classes, as studied below, a set of
possible implementations of the same abstract data type).

• The wordcollectionreflects how classes should be designed: as units which are
interesting and useful on their own, independently of the systems to which they
belong, and may be reused by many different systems. Software construction is
viewed as the assembly of existing classes, not as a top-down process starting from
scratch.

• Finally, the wordstructured reflects the existence of two important relations
between classes: the client and inheritance relations.

Eiffel makes these techniques available to developers in a simple and practical way.

As a language, Eiffel includes more than presented in this introduction, but notmuch
more; it is a small language, not much bigger (by such a measure as the number of
keywords) than Pascal. It was meant to be a member of the class of languages which
programmers can master entirely — as opposed to languages of which most programmers
know only a subset. Yet it is appropriate for the development of industrial software
systems, as has by now been shown by many full-scale projects, some in the thousands of
classes and hundreds of thousands of lines, in companies around the world.

4 CLASSES

A class, it was said above, is an implementation of an abstract data type. This means
that it describes a set of run-time objects, characterized by thefeatures (operations)
applicable to them, and by the formal properties of these features.

Such objects are called thedirect instancesof the class. Classes and objects
should not be confused: “class” is a compile-time notion, whereas objects only exist at
run time. This is similar to the difference that exists in classical programming between
a program and one execution of that program, or between a type and a run-time value
of that type.

“Object-Oriented” is a misnomer; “Class-Oriented Analysis, Design and
Programming” would be a more accurate description of the method.

To see what a class looks like, let us look at a simple example,ACCOUNT, which
describes bank accounts. But before exploring the class itself it is useful to study how
it may be used by other classes, called itsclients.

A classX may become a client ofACCOUNT by declaring one or moreentities
of typeACCOUNT. Such a declaration is of the form:

acc: ACCOUNT
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The term “entity” generalizes the more common notion of “variable”. An entity
declared of a reference type, such asacc, may at any time during execution become
“attached to” an object; the type rules imply that this object must be a direct instance
of ACCOUNT — or, as seen below, of a “descendant” of that class.

An entity is said to be void if it is not attached to any object. By default, entities are void
at initialization. To obtain objects at run-time, a routiner appearing in the client class
X may use acreation instruction of the form

which creates a new direct instance ofACCOUNT, attachesacc to that instance, and
initializes all its fields to default values. A variant of this notation, studied below, makes
it possible to override the default initializations.

Once the client has attachedacc to an object, it may call on this object the features
defined in classACCOUNT. Here is an extract with some feature calls usingacc as
their target:

These feature calls use dot notation, of the formtarget.feature_name, possibly
followed by a list of arguments in parentheses. Features are of two kinds:

• Routines, such as open, deposit, may_withdraw, withdraw, represent
computations applicable to instances of the class.

• Attributes  represent data items associated with these instances.

create acc

acc.open("Jill" )
acc.deposit(5000)
if  acc.may_withdraw(3000) then

acc.withdraw(3000); print (acc.balance)
end

acc
balance

owner

A direct instance
of PERSON

A direct instance
of ACCOUNT

An entity and
the attached
object
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Routines are further divided intoprocedures(commands, which do not return a value)

andfunctions (queries, returning a value). Heremay_withdraw is a function returning

a boolean; the other three-routines called are procedures.

A note on syntax: you may separate instructions by semicolons, and indeed you should

when, as on the next-to-last line of the example, two or more instructions appear on a

line. But the language’s syntax has been designed so that the semicolon is almost always

optional, regardless of the layout. Indeed the practice is to omit it between instructions

or declarations on separate lines, as this results in lighter, clearer software texts.

In classACCOUNT, is featurebalance an attribute, or is it a function with no

argument? The above extract of the client classX doesn’t say, and this ambiguity is

intentional. A client ofACCOUNT must not need to know how classACCOUNT
delivers an account’s balance when requested: by looking up a field present in each

account object, or by calling a function that computes the balance from other fields.

Choosing between these techniques is the business of classACCOUNT, not anybody

else’s. Because such implementation choices are often changed over the lifetime of a

project, it is essential to protect clients against their effects. This is known as the

Uniform Access Principle, stating that the choice between representing a property

through memory (an attribute) or through an algorithm (function) shall not affect how

clients use it.

So much for how client classes will typically useACCOUNT. Below is a first

sketch of how classACCOUNT itself might look. Line segments beginning with-- are

comments. The class includes twofeature clauses, introducing its features. The first

begins with just the keywordfeature , without further qualification; this means that the

features declared in this clause are available (or “exported”) to all clients of the class.

The second clause is introduced byfeature { NONE} to indicate that the feature that

follows, calledadd, is available to no client. What appears between the braces is a list

of client classes to which the corresponding features are available;NONE is a special

class of the Kernel Library, which has no instances, so thatadd is in effect a secret

feature, available only locally to the other routines of classACCOUNT. So in a client

class such asX, the callacc.add (–3000) would be invalid.
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Let us examine the features in sequence. Theis ... do ...end distinguishes routines from
attributes. So here the class has implementedbalance as an attribute, although, as noted,
a function would also have been acceptable. Featureowner is also an attribute.

The language definition guarantees automatic initialization, so that the initial
balance of an account object will be zero after a creation instruction. Each type has a
default initial value: zero forINTEGER and REAL, false for BOOLEAN, null

class  ACCOUNTfeature
balance: INTEGER
owner: PERSON
minimum_balance: INTEGERis  1000
open(who: PERSON) is

-- Assign the account to ownerwho.
do

owner:= who
end

deposit(sum: INTEGER) is
-- Depositsum into the account.

do
add(sum)

end
withdraw(sum: INTEGER) is

-- Withdrawsum from the account.
do

add(–sum)
end

may_withdraw(sum: INTEGER): BOOLEANis
-- Is there enough money to withdrawsum?

do
Result:= (balance >= sum + minimum_balance)

end
feature { NONE}

add(sum: INTEGER) is
-- Add sum to the balance.

do
balance:= balance + sum

end
end  -- class ACCOUNT
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character forCHARACTER, and a void reference for reference types. The class
designer may also provide clients with different initialization options, as will be seen
below in a revised version of this example.

The other public features,open, deposit, withdraw and may_withdraw are
straightforward routines. The special entityResult, used inmay_withdraw, denotes
the function result; it is initialized on function entry to the default value of the
function’s result type. You may only useResult in functions.

The secret procedureadd serves for the implementation of the public procedures
deposit andwithdraw; the designer ofACCOUNT judged it too general to be exported
by itself. The clauseis 1000 introducesminimum_balance as a constant attribute,
which will not occupy any space in instances of the class; in contrast, every instance
has a field for every non-constant attribute such asbalance.

In Eiffel’s object-oriented programming style any operation is relative to a certain
object. A client invoking the operation specifies this object by writing the
corresponding entity on the left of the dot, asacc in acc.open ("Jill"). Within the class,
however, the “current” instance to which operations apply usually remains implicit, so
that unqualified feature names, such asowner in procedureopen or add in deposit,
mean “theowner attribute oradd routine relative to the current instance”.

If you need to denote the current object explicitly, you may use the special entity
Current. For example the unqualified occurrences ofadd appearing in the class text
above are equivalent toCurrent.add.

In some cases, infix or prefix notation will be more convenient than dot notation.
For example, if a classVECTOR offers an addition routine, most people will feel more
comfortable with calls of the formv + w than with the dot-notation callv.plus (w). To
make this possible it suffices to give the routine a name of the forminfix "+" rather than
plus; internally, however, the operation is still a normal routine call. Prefix operators
are similarly available.

The above simple example has shown the basic structuring mechanism of the
language: the class. A class describes objects accessible to clients through an official
interface comprising some of the class features. Features are implemented as attributes
or routines; the implementation of exported features may rely on other, secret ones.
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5 TYPES

Eiffel is strongly typed for readability and reliability. Every entity is declared of a
certain type, which may be either a reference type or an expanded type.

Any typeT is based on a class, which defines the operations that will be applicable
to instances ofT. The difference between the two categories of type affects the
semantics of an entityx declared of typeT: for a reference type, the most common case,
possible values forx are references to objects; for an expanded type, the values are
objects. In both cases, the type rules guarantee that the objects will be instances ofT.

A non-expanded class such asACCOUNT yields a reference type. As a result, an
entity of typeACCOUNT, such asacc in the earlier client example (see the declaration
of acc and the accompanying picture as given on page6), denotes possible run-time
references to objects of typeACCOUNT.

In contrast, the value of an entityacc declared of typeexpanded ACCOUNT is
an object such as the one shown on the figure below, with no reference. The only
difference with the earlier figure is that the value ofacc is now anACCOUNT object,
not a reference to such an object. No creation instruction is needed in this case. (The
figure does not show thePERSON object to which theowner field of theACCOUNT
object — itself a reference — is attached.)

An important group of expanded types, based on library classes, includes the basic
types INTEGER, REAL, DOUBLE, CHARACTER and BOOLEAN. Clearly, the
value of an entity declared of typeINTEGER should be an integer, not a reference to
an object containing an integer value. Operations on these types are defined by prefix
and infix operators such as "+" and "<".

As a result of these conventions, the type system is uniform and consistent: all
types, including the basic types, are defined from classes, either as reference types or
as expanded types.

In the case of basic types, for obvious reasons of efficiency, the ISE Eiffel
compilation mechanism implements the standard arithmetic and boolean operations
directly through the corresponding machine operations, not through routine calls. But
this is only a compiler optimization, which does not hamper the conceptual
homogeneity of the type edifice.

acc: expanded  ACCOUNT balance

owner

A direct instance
of ACCOUNT

An entity of
expanded type
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6 DESIGN BY CONTRACT AND ASSERTIONS

If classes are to deserve their definition as abstract data type implementations, they
must be known not just by the available operations, but also by the formal properties of
these operations, which did not yet appear in the preceding example.

The role of assertions

Eiffel encourages software developers to express formal properties of classes by
writing assertions, which may in particular appear in the following roles:

• Routine preconditions express the requirements that clients must satisfy
whenever they call a routine. For example the designer ofACCOUNT may wish
to permit a withdrawal operation only if it keeps the account’s balance at or above
the minimum. Preconditions are introduced by the keywordrequire .

• Routinepostconditions, introduced by the keywordensure , express conditions
that the routine (the supplier) guarantees on return, if the precondition was
satisfied on entry.

• A classinvariant must be satisfied by every instance of the class whenever the
instance is externally accessible: after creation, and after any call to an exported
routine of the class. The invariant appears in a clause introduced by the keyword
invariant , and represents a general consistency constraint imposed on all routines
of the class.

With appropriate assertions, the classACCOUNT becomes:

class  ACCOUNTcreate
make

feature
... Attributes as before:

balance, minimum_balance, owner, open ...
deposit(sum: INTEGER) is

-- Depositsum into the account.
require

sum >= 0
do

add(sum)
ensure

balance =old  balance + sum
end
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The notationold expression is only valid in a routine postcondition. It denotes the
value theexpression had on routine entry.

Creation procedures

In its last version above, the class now includes a creation procedure,make. With the
first version , clients used creation instructions such ascreate acc1 to create accounts;
but then the default initialization, setting balance to zero, violated the invariant. By
having one or more creation procedures, listed in thecreate clause at the beginning of
the class text, a class offers a way to override the default initializations. The effect of

is to allocate the object (as with the default creation) and to call proceduremake on this
object, with the argument given. This call is correct since it satisfies the precondition;
it will ensure the invariant.

withdraw(sum: INTEGER) is
-- Withdrawsum from the account.

require
sum >= 0
sum <= balance – minimum_balance

do
add(–sum)

ensure
balance =old  balance – sum

end
may_withdraw ...  --As before

feature { NONE}
add ... -- As before

make(initial : INTEGER) is
-- Initialize account with balanceinitial .

require
initial >= minimum_balance

do
balance:= initial

end
invariant

balance >= minimum_balance
end  -- class ACCOUNT

create  acc1.make (5_500)
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The underscore_ in the integer constant5_500 has no semantic effect. The general
rule is that you can group digits by sets of three from the right to improve the readability
of integer constants.

Note that the same keyword,create , serves both to introduce creation instructions and
the creation clause listing creation procedures at the beginning of the class.

A procedure listed in the creation clause, such asmake, otherwise enjoys the same
properties as other routines, especially for calls. Here the proceduremake is secret
since it appears in a clause starting withfeature {NONE}; so it would be invalid for a
client to include a call such as

To make such a call valid, it would suffice to move the declaration ofmake to the first
feature clause of classACCOUNT, which carries no export restriction. Such a call does
not create any new object, but simply resets the balance of a previously created account.

Design by Contract

Syntactically, assertions are boolean expressions, with a few extensions such as theold
notation. Also, you may split an assertion into two or more clauses, as here with the
precondition ofwithdraw; this is as if you had separated the clauses with anand , but
makes the assertion clearer, especially if it includes many conditions.

Assertions play a central part in the Eiffel method for building reliable object-
oriented software. They serve to make explicit the assumptions on which programmers
rely when they write software elements that they believe are correct. Writing assertions
amounts to spelling out the terms of thecontract which governs the relationship
between a routine and its callers. The precondition binds the callers; the postcondition
binds the routine.

The underlying theory ofDesign by ContractTM, the centerpiece of the Eiffel method,
views software construction as based on contracts between clients (callers) and suppliers
(routines), relying on mutual obligations and benefits made explicit by the assertions.

The Contract Form

Assertions are also an indispensable tool for the documentation of reusable software
components: one cannot expect large-scale reuse without a precise documentation of
what every component expects (precondition), what it guarantees in return
(postcondition) and what general conditions it maintains (invariant).

Documentation tools in EiffelBench use assertions to produce information for
client programmers, describing classes in terms of observable behavior, not

acc.make (8_000)
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implementation. In particular theContract Form of a class, also called its “short
form”, which serves as its interface documentation, is obtained from the full text by
removing all non-exported features and all implementation information such asdo
clauses of routines, but keeping interface information and in particular assertions. Here
is the Contract Form of the above class:

This is not actual Eiffel, only documentation of Eiffel classes, hence the use of slightly
different syntax to avoid any confusion (class interface rather thanclass ). In
accordance with the Uniform Access Principle (page7), the output forbalance would
be the same if this feature were a function rather than an attribute.

You will find in ISE’s EiffelStudio automatic tools to produce the Contract Form
of a class. You can also get theFlat Contract form, based on the same ideas but
including inherited features along with those introduced in the class itself. EiffelStudio
can produce these forms, and other documentation views of a class, in a variety of
output formats including HTML, so that collaborative projects can automatically post
the latest versions of their class interfaces on the Internet or an Intranet.

class interface ACCOUNTcreate
make

feature
balance: INTEGER
...

deposit(sum: INTEGER) is
-- Depositsum into the account.

require
sum >= 0

ensure
balance =old  balance + sum

withdraw(sum: INTEGER) is
-- Withdrawsum from the account.

require
sum >= 0
sum <= balance – minimum_balance

ensure
balance =old  balance – sum

may_withdraw ...
end -- class ACCOUNT
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Contracts for testing and debugging

Under EiffelStudio you may also set up compilation options, for the whole system or
specific classes only, to evaluate assertions at run time, to uncover potential errors
(“bugs”). EiffelStudio provides several levels of assertion monitoring: preconditions
only, postconditions etc. When monitoring is on, an assertion which evaluates to true
has no further effect on the execution. An assertion that evaluates to false will trigger
an exception, as described next; unless you have written an appropriate exception
handler, the exception will cause an error message and termination with a precise
message and a call trace.

This ability to check assertions provides a powerful testing and debugging
mechanism, in particular because the classes of the EiffelBase Libraries, widely used
in Eiffel software development, are protected by carefully written assertions.

Run-time monitoring, however, is only one application of assertions, whose role
as design and documentation aids, as part of the theory of Design by Contract, exerts a
pervasive influence on the Eiffel style of software development.

7 EXCEPTIONS

Whenever there is a contract, the risk exists that someone will break it. This is where
exceptions come in.

Exceptions — contract violations — may arise from several causes. One is an
assertion violation, if you’ve selected run-time assertion monitoring. Another is a
signal triggered by the hardware or operating system to indicate an abnormal condition
such as arithmetic overflow, or an attempt to create a new object when there’s not
enough memory available.

Unless a routine has made specific provision to handle exceptions, it willfail if an
exception arises during its execution. This in turn provides one more source of
exceptions: a routine that fails triggers an exception in its caller.

A routine may, however, handle an exception through arescue clause. This
optional clause attempts to “patch things up” by bringing the current object to a stable
state (one satisfying the class invariant). Then it can terminate in either of two ways:

• The rescue clause may execute aretry instruction, which causes the routine to
restart its execution from the beginning, attempting again to fulfil its contract,
usually through another strategy. This assumes that the instructions of therescue
clause, before theretry , have attempted to correct the cause of the exception.

• If the rescue clause does not end withretry , then the routine fails: it returns to
its caller, immediately triggering an exception. (The caller’srescue clause will
be executed according to the same rules.)
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The principle is thata routine must either succeed or fail: it either fulfills its contract,
or not; in the latter case it must notify its caller by triggering an exception.

Usually, only a few routines of a system will explicitly include arescue clause.
A routine that doesn’t have an explicitrescue is considered to have an implicit one,
which calls a routinedefault_rescue that by default does nothing, so that an exception
will cause the routine to fail immediately, propagating the exception to the caller.

An example using the exception mechanism is a routineattempt_transmission
that tries to transmit a message over a phone line. The actual transmission is performed
by an external, low-level routinetransmit; once started, however,transmit may
abruptly fail, triggering an exception, if the line is disconnected. Routineattempt_
transmission tries the transmission at most 50 times; before returning to its caller, it
sets a boolean attributesuccessful to True or False depending on the outcome. Here
is the text of the routine:

Initialization rules ensure thatfailures, a local entity, is set to zero on entry.

This example illustrates the simplicity of the mechanism: therescue clause never
attempts to achieve the routine’s original intent; this is the sole responsibility of the
body (thedo clause). The only role of therescue clause is to clean up the objects
involved, and then either to fail or to retry.

This disciplined exception mechanism is essential for software developers, who
need protection against unexpected events, but cannot be expected to sacrifice safety
and simplicity to pay for this protection.

attempt_transmission(message: STRING) is
-- Try to transmitmessage, at most 50 times.
-- Setsuccessful accordingly.

local
failures: INTEGER

do
if  failures < 50then

transmit(message); successful:= True
else

successful:= False
end

rescue
failures:= failures + 1; retry

end
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8 EVENT-DRIVEN PROGRAMMING AND AGENTS

The division of roles in object technology is clear: of the two principal constituents of
a system,object typesandoperations, the first dominates. Classes, representing object
types, determines the structure of the software; every routine, representing an
operations, belongs to a class.

In some circumstances it is useful to define anobjectthat denotes anoperation. This
is especially useful if you want to build an object structure that refers to operations, so that
you can later traverse the structure and execute the operations encountered. A typical
application isevent-driven programming for Graphical User Interfaces (GUI), including
Web programming. In GUI programming you will want to record properties of the form

each involves acontrol (here the OK button), anevent(mouse click) and anoperation
(update the file). This can be programmed by having an “event loop”, triggered for each
event, which performs massive decision-making (if “The latest event was ‘left
mouse click on button 23” then “Appropriate instructions” else if … and so on
with many branches); but this leads to bulky software architectures where introducing
any new control or event requires updating a central part of the code. It’s preferable to
let any element of the system that encounters a new control-event-operation association

store it as a triple of objects into an object structure, such as an array or a list. Triples
in that structure may come from different parts of the system; there is no central know-
it-all structure. The only central element is a simple mechanism which can explore the
object structure to execute eachoperation associated with a certaincontrol and a certain
event. The mechanism is not just simple; it’s also independent of your application, since
it doesn’t need to know about any particular control, event or operation (it will find them
in the object structure). So it can be programmed once and for all, as part of a library
such as ISE’s EiffelVision 2 for platform-independent graphics.

To build an object structure, we need objects. Acontrol, an event are indeed
objects. But anoperation is not: it’s program code — a routine of a certain class.

Agents address this issue. An agent is anobjectthat represents aroutine, which can
then be kept in an object structure. The simplest form of agent is writtenagent r, where
r is a routine. This denotes an object. Ifyour_agent is such an agent object, the call

“When the user clicks this OK button, the system must update the file”

[control, event, operation]



INVITATION TO EIFFEL §818
wherea andb are valid arguments forr, will have the same effect as a direct call to
r with argumentsa andb. Of course, if you know that you want to callr with those
arguments, you don’t need any agents; just use the direct callr (a, b). The benefit of
using an agent is that you can store it into an object structure to be calledlater, for
example when an event-driven mechanism finds the agent in the object structure,
associated with a certain control and a certain event. For this reason agents are also
calleddelayed calls.

The notation[a, b] denotes a sequence of elements, ortuple. The reasoncall needs a
tuple as argument, whereas the direct callr (a, b) doesn’t, is thatcall is a general routine
(from the EiffelBase classROUTINE, representing agents) applicable to any agent,
whereas the direct call refers explicitly tor and hence requires argumentsa andb of
specific types. The agent mechanism, however, is statically typed like the rest of the
language; when you callcall, the type checking mechanism ensures that the tuple you
pass as argument contains elementsa andb of the appropriate types.

A typical use of agents with EiffelVision 2 is

which says: “addyour_routine to the list of operations to be performed whenever a
select event (left click) happens onok_button”. ok_button.select_actions is the list
of agents associated with the button and the event; in list classes, procedureextend
adds an item at the end of a list. Here, the object to be added is the agent.

This enables the EiffelVision event-handling mechanism to find the appropriate
agent when it processes an event, and callcall on that agent to trigger the appropriate
routine. EiffelVision doesn’t know that it’syour_routine; in fact, it doesn’t know
anything about your application. It simply finds an agent in the list, and callscall on it.
For your part, as the author of a graphical application, you don’t need to know how
EiffelVision handles events; you simply associate the desired agents with the desired
controls and events, and let EiffelVision 2 do the rest.

Agents extend to many areas beyond GUIs. Innumerical computation, you may
use an agent to pass to an “integrator” object a numerical function to be integrated over
a certain interval. In yet another area, you can use agents (as in the iteration library of
EiffelBase) to programiterators: mechanisms that repetitively apply an arbitrary
operation — represented by an agent — to every element of a list, tree or other object
structure. More generally, agent embody properties of the associated routines, opening
the way to mechanism forreflection, also called “introspection”: the ability, during
software execution, to discover properties of the software itself.

your_agent.call ([a, b])

ok_button.select_actions.extend(agent  your_routine)
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9 GENERICITY

Building software components (classes) as implementations of abstract data types
yields systems with a solid architecture but does not in itself ensure reusability and
extendibility. Two key techniques address the problem: genericity (unconstrained or
constrained) and inheritance. Let us look first at the unconstrained form.

To make a class generic is to give itformal generic parametersrepresenting as
unknown types, as in these examples from ISE’s EiffelBase, an open-source library
covering basic data structures and algorithms:

These classes describe data structures — arrays, lists without commitment to a specific
representation, lists in linked representation — containing objects of a certain type. The
formal generic parameterG denotes this type.

A class such as these doesn’t quite yet describe a type, but a type template, since
G itself denotes an unknown type. To derive a directly usable list or array type, you
must provide a type corresponding toG, called anactual generic parameter; this may
be either an expanded type, including basic types such asINTEGER, or a reference
type. Here are some possible generic derivations:

Asthe lastexample indicates,anactualgenericparametermayitselfbegenericallyderived.

It would not be possible, without genericity, to have static type checking in a
realistic object-oriented language.

A variant of this mechanism,constrained genericity, will enable a class to place
specific requirements on possible actual generic parameters. Constrained genericity
will be described after inheritance.

ARRAY[G]
LIST [G]
LINKED_LIST[G]

il: LIST [INTEGER]
aa: ARRAY [ACCOUNT]
aal: LIST [ARRAY [ACCOUNT]]
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10 INHERITANCE

Inheritance, the other fundamental generalization mechanism, makes it possible to
define a new class by combination and specialization of existing classes rather than
from scratch.

The following simple example, from the Data Structure Library in EiffelBase, is
typical.LIST, as noted, describes lists in any representation. One such representation if
the lists have a fixed number of elements uses an array. We may define the
corresponding class by combination ofLIST andARRAY, as follows:

The inherit ... clause lists all the “parents” of the new class, which is said to be their
“heir”. (The “ancestors” of a class include the class itself, its parents, grandparents etc.;
the reverse term is “descendant”.) DeclaringARRAYED_LIST as shown ensures that
all the features and properties of lists and arrays are applicable to arrayed lists as well.
Since the class has more than one parent, this is a case ofmultiple inheritance.

Standard graphical conventions — drawn from the Business Object Notation or
BON, a graphical object-oriented notation based on concepts close to those of Eiffel,
and directly supported by EiffelStudio — illustrate such inheritance structures:

class  ARRAYED_LIST[G] inherit
LIST[G]
ARRAY[G]

export  ... See below ... end
feature

... Specific features of fixed-size lists ...
end  -- class ARRAYED_LIST

ARRAYED_
LIST

LIST ARRAY
An inheritance
structure
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An heir class such asARRAYED_LIST needs the ability to define its own export
policy. By default, inherited features keep their export status (publicly available, secret,
available to selected classes only); but this may be changed in the heir. Here, for
example,ARRAYED_LIST will export only the exported features ofLIST, making
those ofARRAY unavailable directly toARRAYED_LIST’s clients. The syntax to
achieve this is straightforward:

Another example of multiple inheritance comes from a windowing system based on a
classWINDOW, close to actual classes in EiffelVision 2. Windows havegraphical
features: a height, a width, a position, routines to scale windows, move them, and other
graphical operations. The system permits windows to be nested, so that a window also
hashierarchical features: access to subwindows and the parent window, adding a
subwindow, deleting a subwindow, attaching to another parent and so on. Rather than
writing a complex class that would contain specific implementations for all of these
features, it is preferable to inherit all hierarchical features fromTREE (a class in
EiffelBase describing trees), and all graphical features from a classRECTANGLE.

Inheritance complements the “client” relation by providing another form of reuse
that yields remarkable economies of effort — for analysis, design, implementation,
evolution — and has a profound effect on the entire software development process.

The very power of inheritance demands adequate means to keep it under control.
Multiple inheritance, in particular, raises the question of name conflicts between
features inherited from different parents; this case will inevitably arise in practice,
especially for classes contributed by independent developers. You may remove such a
name conflict throughrenaming, as in

Here, if bothA andB have features namedx andy, classC would be invalid without
the renaming.

class  ARRAYED_LIST[G] inherit
LIST [G]
ARRAY[G]

export { NONE}  all end
... The rest as above ...

class  C inherit
A rename  x as x1, yas y1end
B rename  x as x2, yas y2end

feature ...
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Renaming also serves to provide more appropriate feature names in descendants.
For example, classWINDOW may inherit a routineinsert_subtree from TREE. For
clients of WINDOW, however, such a routine name is no longer appropriate. An
application that uses this class needs coherent window terminology, and should have to
concern itself with the inheritance structure that led to the class. So you may wish to
renameinsert_subtree asadd_subwindow in the inheritance clause ofWINDOW.

As a further protection against misusing multiple inheritance, the invariants of all
parent classes automatically apply to a newly defined class. So classes may not be
combined if their invariants are incompatible.

11 POLYMORPHISM AND DYNAMIC BINDING

Inheritance is not just a module combination and enrichment mechanism. It also
enables the definition of flexible entities that may become attached to objects of various
forms at run time, a property known as polymorphism.

This remarkable facility must be reconciled with static typing. The language
convention is simple: an assignment of the forma := b is permitted not only ifa andb
are of the same type, but more generally ifa andb are of reference typesA andB, based
on classes A andB such thatB is a descendant ofA.

This corresponds to the intuitive idea that a value of a more specialized type may
be assigned to an entity of a less specialized type — but not the reverse. (As an analogy,
consider that if you request vegetables, getting green vegetables is fine, but if you ask
for green vegetables, receiving a dish labeled just “vegetables” is not acceptable, as it
could include, say, carrots.)

What makes this possibility particularly powerful is the complementary facility:
feature redefinition. A class may redefine some or all of the features which it inherits
from its parents. For an attribute or function, the redefinition may affect the type,
replacing the original by a descendant; for a routine it may also affect the
implementation, replacing the original’s routine body by a new one.
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Assume for example a classPOLYGON, describing polygons, whose features
include an array of points representing the vertices and a functionperimeter which
computes a polygon’s perimeter by summing the successive distances between adjacent
vertices. An heir ofPOLYGON may begin as:

Here it is appropriate to redefineperimeter for rectangles as there is a simpler and
more efficient algorithm. Note the explicitredefine subclause (which would come
after therename  if present).

Other descendants ofPOLYGON may also have their own redefinitions of
perimeter. The version to use in any call is determined by the run-time form of the
target. Consider the following class fragment:

The polymorphic assignmentp := r is valid because of the above rule. If conditionc is
false, p will be attached to an object of typePOLYGON for the computation of
p.perimeter, which will thus use the polygon algorithm. In the opposite case, however,
p will be attached to a rectangle; then the computation will use the version redefined
for RECTANGLE. This is known asdynamic binding.

Dynamic binding provides a high degree of flexibility. The advantage for clients
is the ability to request an operation (such as perimeter computation) without explicitly
selecting one of its variants; the choice only occurs at run-time. This is essential in large
systems, where many variants may be available; dynamic binding protects each
component against changes in other components.

class  RECTANGLEinherit
POLYGONredefine  perimeterend

feature  -- Specific features of rectangles, such as:
side1: REAL; side2: REAL
perimeter: REALis

-- Rectangle-specific version
do  Result:= 2 * (side1 + side2) end

... Other RECTANGLEfeatures ...

p: POLYGON; r: RECTANGLE
... create   p; create   r; ...
if  c then

p := r
end
print (p.perimeter)
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This technique is particularly attractive when compared to its closest equivalent in
traditional approaches, where you would need records with variant components, or
union types (C), together withcase (switch) instructions to discriminate between
variants. This means that every client must know about every possible case, and that
any extension may invalidate a large body of existing software.

The combination of inheritance, feature redefinition, polymorphism and dynamic
binding supports a development mode in which every module is open and incremental.
When you want to reuse an existing class but need to adapt it to a new context, you can
define a new descendant of that class (with new features, redefined ones, or both)
without any change to the original. This facility is of great importance in software
development, an activity that — by design or circumstance — is invariably incremental.

The power of these techniques demands adequate controls. First, feature
redefinition, as seen above, is explicit. Second, because the language is typed, a
compiler can check statically whether a feature applicationa.f is correct. In contrast,
dynamically typed object-oriented languages defer checks until run-time and hope for
the best: if an object “sends a message” to another (that is to say, calls one of its
routines) one just expects that the corresponding class, or one of its ancestors, will
happen to include an appropriate routine; if not, a run-time error will occur. Such errors
will not happen during the execution of a type-checked Eiffel system.

In other words, the language reconciles dynamicbindingwith statictyping. Dynamic
binding guarantees that whenever more than one version of a routine is applicable theright
version (the one most directly adapted to the target object) will be selected. Static typing
means that the compiler makes sure there isat least one such version.

This policy also yields an important performance benefit: in contrast with the
costly run-time searches that may be needed with dynamic typing (since a requested
routine may not be defined in the class of the target object but inherited from a possibly
remote ancestor), the EiffelBench implementation always finds the appropriate routine
in constant-bounded time.

Assertions provide a further mechanism for controlling the power of redefinition.
In the absence of specific precautions, redefinition may be dangerous: how can a client
be sure that evaluation ofp.perimeter will not in some cases return, say, the area?
Preconditions and postconditions provide the answer by limiting the amount of
freedom granted to eventual redefiners. The rule is that any redefined version must
satisfy a weaker or equal precondition and ensure a stronger or equal postcondition than
in the original. This means that it must stay within the semantic boundaries set by the
original assertions.
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The rules on redefinition and assertions are part of the Design by Contract theory,
where redefinition and dynamic binding introducesubcontracting. POLYGON, for
example, subcontracts the implementation of perimeter toRECTANGLE when applied
to any entity that is attached at run-time to a rectangle object. An honest subcontractor
is bound to honor the contract accepted by the prime contractor. This means that it may
not impose stronger requirements on the clients, but may accept more general requests:
weaker precondition; and that it must achieve at least as much as promised by the prime
contractor, but may achieve more: stronger postcondition.

12 COMBINING GENERICITY AND INHERITANCE

Genericity and inheritance, the two fundamental mechanisms for generalizing classes,
may be combined in two fruitful ways.

The first technique yieldspolymorphic data structures. Assume that in the
generic classLIST [G] the insertion procedureput has a formal argument of typeG,
representing the element to be inserted. Then with a declaration such as

the type rules imply that in a callpl.put ("p") the permitted types for the argumentp
include not justPOLYGON, but alsoRECTANGLE (an heir ofPOLYGON) or any
other type conforming toPOLYGON through inheritance.

The basic conformance requirement used here is the inheritance-based type
compatibility rule:V conforms toT if V is a descendant ofT.

Structures such aspl may contain objects of different types, hence the name
“polymorphic data structure”. Such polymorphism is, again, made safe by the type
rules: by choosing an actual generic parameter (POLYGON in the example) based
higher or lower in the inheritance graph, you extend or restrict the permissible types of
objects inpl. A fully general list would be declared as

whereANY, a Kernel Library class, is automatically an ancestor of any class that you
may write.

pl: LIST[POLYGON]

LIST [ANY]
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The other mechanism for combining genericity and inheritance isconstrained
genericity. By indicating a class name after a formal generic parameter, as in

you express that only descendants of that class (hereNUMERIC) may be used as the
corresponding actual generic parameters. This makes it possible to use the
corresponding operations. Here, for example, classVECTOR may define a routine
infix "+" for adding vectors, based on the corresponding routine fromNUMERIC for
adding vector elements. Then by makingVECTOR itself inherit fromNUMERIC, you
ensure that it satisfies its own generic constraint and enable the definition of types such
asVECTOR [VECTOR [T]].

As you have perhaps guessed, unconstrained genericity, as inLIST [G], may be
viewed as an abbreviation for genericity constrained byANY, as in

Something else you may have guessed: ifANY, introduced in this session, is the top of
the inheritance structure — providing all classes with universal features such asequal to
compare arbitrary objects andclone to duplicate objects — thenNONE, seen earlier in
the notationfeature {NONE}, is its bottom.NONE indeed conceptually inherits from
all other classes.NONE is, among other things, the type ofVoid, the void reference.

13 DEFERRED CLASSES AND SEAMLESS DEVELOPMENT

The inheritance mechanism includes one more major notion: deferred features and classes.

Declaring a featuref as deferred in a classC expresses that there is no default
implementation off in C; such implementations will appear in eventual descendants of
C. A class that has one or more deferred routines is itself said to be deferred. A non-
deferred routine or class — like all those seen until now — is said to beeffective.

For example, a system used by a Department of Motor Vehicles to register vehicles
might include a class of the form

VECTOR [T –> NUMERIC]

LIST [G –> ANY].

deferred class  VEHICLEfeature
dues_paid(year: INTEGER): BOOLEANis

do ... end
valid_plate(year: INTEGER): BOOLEANis

do ... end
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This example assumes that no single registration algorithm applies to all kinds of
vehicle; passenger cars, motorcycles, trucks etc. are all registered differently. But the
same precondition and postcondition apply in all cases. The solution is to treatregister
as a deferred routine, makingVEHICLE a deferred class. Descendants of class
VEHICLE, such asCAR or TRUCK, effect this routine, that is to say, give effective
versions. An effecting is similar to a redefinition; only here there is no effective
definition in the original class, just a specification in the form of a deferred routine. The
termredeclaration covers both redefinition and effecting.

Whereas an effective class described an implementation of an abstract data types, a
deferred class describes asetof possible implementations. You may not instantiate a
deferred class:create v is invalid if v is declared of typeVEHICLE. But you may
assign tov a reference to an instance of an effective descendant ofVEHICLE. For
example, assumingCAR and TRUCK provide effective definitions for all deferred
routines ofVEHICLE, the following will be valid:

register(year: INTEGER) is
-- Register vehicle foryear.

require
dues_paid(year)

deferred
ensure

valid_plate(year)
end

... Other features, deferred or effective...
end  -- class VEHICLE

v: VEHICLE; c: CAR; t: TRUCK
...
create  c ...; create   t ...;...
if “Some test” then  v := c else  v := t end
v.register (2003)

VEHICLE

CAR TRUCK

register+ register+

register∗

∗ deferred
+ effected

heir

∗ Deferred class
and effective
heirs
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This example fully exploits polymorphism: depending on the outcome of “Some test”,
v will be treated as a car or a truck, and the appropriate registration algorithm will be
applied. Also,“Some test” may depend on some event whose outcome is impossible
to predict until run-time, for example the user clicking with the mouse to select one
among several vehicle icons displayed on the screen.

Deferred classes are particularly useful at thedesignstage. The first version of a
module may be a deferred class, which will later be refined into one or more effective
classes. Eiffel’s Design by Contract mechanisms are essential here: you may a
precondition and a postcondition with a routine even though it is a deferred routine (as
with register above), and an invariant with a class even though it is a deferred class.
This enables you, as a designer, to attach precise semantics to a module at the design
stage long before you will make any implementation choices.

Beyond design and implementation, these techniques extend to the earliest stage
of development,analysis. Deferred classes written at that stage describe not software
objects, but objects from the external world being modelled — documents, airplanes,
investments. Here again the presence of contracts to express constraints, and the
language’s other structuring facilities, provide an attractive combination.

Eiffel appears here in its full role of a lifecycle approach, covering areas
traditionally considered separate: program implementation, the traditional province of
development environments; system modeling and architecture, the traditional province
of CASE tools based on UML or similar notations disconnected from the rest of the
lifecycle. Eiffel instead emphasizes the fundamental unity of the software process and
the usefulness of a single set of notations, concepts and tools applicable throughout.
Such aseamlessapproach is indispensable to support the inevitablereversalsthat occur
during the process of building software, such as detecting at implementation time a
problem that leads to a change in the system’s functionality, set at analysis time. The
use of separate tools and notations, such as UML on one side and a programming
language on the other, makes such round-trips difficult at best and often leads to
monolithic, hard-to-change software. Eiffel lets you focus on the issues, without
interposing artificial barriers between different software development activities. You’ll
use the fundamental problem-solving techniques — data abstraction through classes,
precise specification through contracts, modularity through information hiding,
rational organization through inheritance, decentralized architecture through dynamic
binding, parameterization of the solution through genericity, reusability through all
these techniques — all along; only the level of abstraction changes.
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14 PUTTING A SYSTEM TOGETHER

We have now studied the constituents of Eiffel software. It remains to see how you can
combine these elements into executablesystems— the Eiffel concept closest to the
traditional notion of program — and libraries.

How do you get an executable system? All you need is to

• Provide a set of classes, called auniverse.

• Designate of these classes as theroot class.

• Designate one of its creation procedures as theroot procedure.

This defines what it means to execute the system: create one direct instance of the root
class (the execution’sroot object); and call the root procedure on it. That’s all.

In any practical case, the root procedure will create other objects, call other
routines on them, leading to further creations and calls.

For the system to be valid, it must include all the classes which the rootneeds
directly or indirectly; a class “needs” another if it is one of its heirs or clients.

We can generalize these notions to encompass a library rather than an executable
system, by acceptingNONE as root class. SinceNONE inherits from all other classes,
it needs all the classes in the universe; compiling withNONE as root will compile all
classes. In this case you don’t specify a root procedure, and the result is not executable.

The Eiffel method suggests grouping related classes — typically 5 to 40 classes
— into collections calledclusters. A universe is then a set of clusters. For example the
EiffelBase library is divided into clusters corresponding each to a major category of
data structure:lists, tables, iteration and so on. You can nest clusters, using for
example EiffelBase, with its own subclusters as listed, as a cluster of your system.

How will you specify a universe? Any Eiffel implementation can use its own
conventions. EiffelStudio applies a simple policy:

• Store each class in a single file, called its class file, with a name of the form
name.e. For clarity,name should be the lower-case version of the class name,
although this is a style rule, not a requirement.

• Put all the class files of a cluster into a single directory (folder on Windows), called
its cluster directory.

It is desirable for clarity, as a style rule, to separate clusters that directly contain classes
(“terminal clusters”) from those that have subclusters. Cluster directories will then
contain class files or cluster subdirectories, but not both.

• To specify a system, it suffices to provide a list of cluster directories, along with
the name of the root class and root procedure. The universe consists of the classes
contained in all the class files in the listed cluster directories.
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Here is an example of such a system specification. It’snot written in Eiffel,
although it definitely has an Eiffel-like flavor. It is called anAce (Assembly of Classes
in Eiffel) and written in the Eiffel-likeLace notation (Language for the Assembly of
Classes in Eiffel). The backward slash\ is the Windows path separator; Unix uses a
forward slash/ for the same purpose (EiffelStudio will accept both on Windows).

With EiffelStudio you don’t have to write the Ace yourself; just specify the information
interactively through the Preferences dialog and EiffelStudio will generate the Ace.
You can also reuse and adapt one of the many example Aces in the delivery.

So you don’t need to learn the syntax of Lace, although as the example shows it is
straightforward. The Ace first gives the system a name,example, which will also serve
as the name of the generated executable. It then specifies the root class, its cluster
(optional), and the root procedure. Next, in thedefault clause, come compilation
options; you can specify assertion monitoring, with choices that includenone ,
require (preconditions only, the default),ensure (preconditions and postconditions,
as here) andinvariant (the previous two plus class invariants). You can also specify
various levels of assertion monitoring separately for a cluster, or for a specific class.
Theprecompiled option specifies use of a precompiled library, EiffelBase, at the path
given. The Ace ends with a list of clusters, other than those of EiffelBase, specifying
for a cluster name, such asmy_cluster1, and the directory where it resides.

The path names in this example use the Windows path separator, a backward slash\.
Unix uses a forward slash/ (also acceptable on Windows) for the same purpose.

This Ace is from an example in the delivery. If you compile and execute it, it will
create an instance of classCALCULATOR and call itsmake procedure. This starts a
small interactive calculator, illustrating some of the simple mechanisms of EiffelBase.

system
example

root
CALCULATOR (my_cluster1): "make"

default
assertion (ensure )
precompiled

("$ISE_EIFFEL\ precomp\ spec\ $PLATFORM\ base")
cluster

my_cluster1: "mydir\project1\subdir"
her_cluster2: "herdir\project2\subdir1\subdir2"

end
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