
MA346m Quiz 02 Friday 20/10/17
(1) A complete binary tree is one where no node has just one child. Binary operators

provide an example. It is possible to construct a complete binary tree with n nodes from a
single array with n 1-bit entries, indicating which nodes are leaves and which are not, assuming
that the order of array entries follows preorder. Write a recursive routine

BST_NODE * build (int * pre, int is_leaf[])

called as

pre = 0;

p = build (&pre, is_leaf)

which builds a tree (with p pointing to its root). BST_NODE should have left and right pointers
and a pre_rank entry. Ignore the parent links.

Answer

BST_NODE * build (int * pre, int is_leaf [])

{

BST_NODE * new = (BST_NODE *) calloc (1, sizeof(BST_NODE));

new->pre_rank = * pre;

++ * pre;

if (! is_leaf [new->pre_rank])

{

new->left = build (pre, is_leaf);

new->right = build (pre, is_leaf);

}

return new;

}

(2). Apply fix double red to this tree.

(3). Splay trees achieve good amortised times for various operations. The idea is when
performing a certain operation, bring a suitable node to the root by splaying. One must make
allowances for increased potential when trees are joined, nodes are inserted, etcetera.

Design an ‘insert’ operation with good amortised time.

x

x x

y

Answer. Suppose that searching for a key y fell off the ‘left’ of a node x. Splay x to root
at cost ≤ 1+3 log

2
n. Then inserting x raises the total weight of all descendants of y from 1/n

to at most 1 − 1/n and for x it increases by 1/n. Let r be the rank of x after the splay and
before the insertion. So the potential increase is at most

log
2
(1− 1/n)− log

2
(1/n) + log

2
(r + 1/n)− log

2
(r) ≤ log

2
n+ log

2
(1 + 1/nr) ≤ log

2
n+ 1.

(4). Write a recursive routine install_ranks:

typedef struct BST_NODE

{

struct BST_NODE * left, * right;

int pre_rank, in_rank, post_rank;

} BST_NODE;

Answer

void install_ranks (int * pre, int * in, int * post,

BST_NODE * p)

{

if (p != NULL)

{

p->pre_rank = * pre; ++ * pre;

install_ranks (p->left);

p->inorder_rank = *in; ++ * in;

install_ranks (p->right);

p->post_rank = * post; ++ *post;

}

}

