
MA346m Quiz 01 ANSWERS 6/10/17
(1). Give a simple example where two different binary trees are the same in preorder and

postorder. Answer: below.

a

b b

a

(2). Write a piece of C code which given a pointer p to a binary tree node, returns the
preorder successor of p, as sketched out in lectures.

if (p->left != NULL)

return p->left;

else if (p->right != NULL)

return p->right;

else

{

BTREE_NODE * q = p->parent;

while (q != NULL && p == q->right)

{ p = q; q = p->parent; }

return q;

}

(3). The tree below is labelled according to preorder. Write these labels in inorder. This
should serve as a guide to the remainder of the question.

1

3

0

2

4
5

6 7

2 1 4 3 6 5 7 0

Write a piece of C code

BTREE_NODE * build (int i, int j, int a[])

which, given both the inorder and preorder sequences of nodes in a binary tree, reconstructs
the tree. The arguments imply that a subtree is stored between indices i and j: the initial call
is build(0, n-1, a). To make it easier, you can assume that the preorder ranks are given in
an array according to inorder rank. Recursion is very useful here.

BTREE_NODE * build (int i, int j, int a[])

{

if (i > j)

return NULL;

else

{

int minpos = i; int k;

for (k = i+1; k <= j; ++k)

if (a[k] < a[minpos])

minpos = k;

BTREE_NODE * q = make_btree_node (a[minpos]);

q->left = build (i, minpos-1, a);

q->right = build (minpos+1, j, a);

return q;

}

}

(4). Write a piece of C code

join (BTREE * t1, BTREE * t2, BTREE * t3) ...

where t3 is the new tree. It takes the nodes from the first two trees and modifies the pointers
so that the nodes reappear in t3, preserving inorder within t1 and t2, and making all nodes
from t2 follow those from t1 with respect to inorder. This ‘destroys the arguments:’ t1 and
t2 will no longer be correct. Example:

a

b

c

d
e

f

g

a

b

c

d

e

f

g

Try to make it efficient: O(h1 + h2) where h1, h2 are the heights of t1, t2.

if (t1->root == NULL)

t3->root = t2->root;

else if (t2 -> root == NULL)

t3->root = t1->root;

else

{

BTREE_NODE * p = t1->root;

while (p->right != NULL)

p = p->right;

t2->root->parent = p;

p->right = t2->root;

t3->root = t1->root;

}

