
Mathematics 1263: introduction to numerical analysis,

Michaelmas 2014

Colm Ó Dúnlaing

March 31, 2015

1 GCD

(1.1) Definition The greatest common divisor (gcd), also called the highest common factor (hcf), of

two integers m and n, is the largest positive integer which divides both m and n. It is undefined if

m = n = 0.

One writes gcd(m,n) for the gcd of m and n.

(1.2) Proposition (‘division algorithm’). Let d be a positive integer1 For every integer n there exist

integers q and r such that

• n = qd+ r

• 0 ≤ r ≤ d− 1

Also, q and r are unique.

We call q and r the quotient and remainder on dividing n by d, or the remainder of n modulo d.

We write

n = qd+ r

q = n÷ d

r = (n mod d)

For example, 100 = 7× 13 + 9: with d = 13, n = 100, the quotient 100÷ 13 is 7 and the remainder

is 9.

(1.3) Lemma (i) gcd(m,n) = gcd(n,m)
(ii) If m > 0 and n = 0, then gcd(m,n) = m.

(iii) If m ≥ n > 0, then gcd(m,n) = gcd(n,m mod n)

1The definition can be extended to negative integers d, but it is tedious and seldom used.

1

For example,

gcd(100, 13) = gcd(13, 9) = gcd(9, 4) = gcd(4, 1) = gcd(1, 0) = 1.

This gives an efficient way to calculate the gcd of two numbers. Assume m > n > 0.

x0 = m; x1 = n; x2 = x0 mod x1; x3 = x1 mod x2; . . .

Continue until xk+1 = 0; then xk is the gcd.

1.1 A digression

We can get an interesting (not for the purposes of this course) modification of the GCD algorithm.

The general step is

xk+1 = xk−1 mod xk

If we break this down into two steps

qk = xk−1 ÷ xk xk+1 = xk−1 − qkxk

we can apply the same combination

rk−1 − qkrk

to other sequences of numbers. In particular if we build the sequences r0, r1, . . . and s0, s1, . . . by

setting

r0 = 1, r1 = 0, s0 = 0, s1 = 1

we get an interesting effect.

i xi ri si qi
0 100 1 0 –

1 13 0 1 7
2 9 1 −7 1
3 4 −1 8 2
4 1 3 −23 4
5 0 – – –

You can check that the following ‘invariant condition’ holds throughout the table:

xi = m× ri + n× si

In particular,

gcd(100, 13) = 3× 100− 23× 13.

In view of this, one can make an alternative definition of the gcd:

(1.4) Proposition Given two integers m and n, with (for simplicity) m ≥ n > 0, gcd(m,n) is the

smallest positive integer of the form rm+ sn where r and s can be any integers.

2

2 Sturm’s Theorem

(2.1) Definition A Polynomial in x with integer/rational/real/complex coefficients is an expression

of the form

a0 + a1x+ . . .+ anx
n,

where n ≥ 0, an 6= 0 except when n = 0 and a0 = 0, and the coefficients aj are

integer/rational/real/complex numbers.

If n = 0 so the polynomial is just a0, we identify it with the constant a0. The zero polynomial

corresponds to the constant 0.

The degree of the zero polynomial is −∞. Otherwise the degree is n.

We write deg(p) for the degree of the polynomial p.

(2.2) Proposition (Division algorithm.) If p and d are polyomials and d 6= 0, with coefficients in a

field2 then there exist unique polynomials q and r, such that

• p = qd+ r and

• deg(r) < deg(d).

We are only interested in polynomials with real coefficients.

We call q the quotient and r the remainder on dividing p by d. If the remainder is zero, we say

that d divides p exactly.

Scaling by a constant x+ 1 divides x2 − 1; so does 2x+ 2. For any nonzero polynomial p, and

any nonzero real number c, cp divides p and p divides cp. In this way the gcd is not fully defined. We

can standardise it by requiring that it be monic: the highest degree term is xn for some n.

If f(x) is a function and α a real or complex number such that f(α) = 0, we call α a zero of the

function f, or a root of the equation f(x) = 0, or more loosely, a root of f .

GCD computations. Wherever you have a division algorithm, you have a GCD algorithm, more

or less. Euclid’s algorithm produced an integer GCD: the same method produces polynomial GCDs

as well. For example,

a = x4 + 2x3 − x2 − 3x− 1 and b = x3 + x2 − 3x− 3,

x4 + 2x3 − 1x2 − 3x− 1 = (x+ 1)(x3 + x2 − 3x− 3) + (x2 + 3x+ 2)

x3 + x2 − 3x− 3 = (x− 2)(x2 + 3x+ 2) + (x+ 1)

x2 + 3x+ 2 = (x+ 2)(x+ 1) + (0)

The gcd is x+ 1. Below the various polynomials are tabulated.

f g h q
x4 + 2x3 − 1x2 − 3x− 1 x3 + x2 − 3x− 3 x2 + 3x+ 2 x+ 1

x3 + x2 − 3x− 3 x2 + 3x+ 2 x+ 1 x− 2
x2 + 3x+ 2 x+ 1 0 x+ 2

x+ 1 0 − −

2 For example, it won’t work with integer coefficients

3

(2.3) Definition Let p(x) be a polynomial, α a root, so (x − α) divides p(x). If no higher power of

(x− α) divides p, then α is a simple root of p.

(2.4) Lemma Let p be a nonzero polynomial and g = gcd(p, p′). Then the roots of p and p/g are the

same, but the roots of p/g are simple.

In particular, all roots ofp are simple if and only if gcd(p, p′) = 1. (No proof)

Sturm sequences. If p is a nonzero simple real polynomial, of degree n > 0, the Sturm Sequence

is the sequence

p0, p1, . . . pk

where p0 = p, p1 = p′, and for j = 1, . . . , k − 1,

pj−1 = pjqj − pj+1,

where qj is the quotient, pj+1 is the remainder negatived, and pk is constant.

This is a GCD computation, except for the signs of the remainders.

A Sturm sequence is studied for sign changes (as described below), and

any member of the sequence can be scaled by a positive constant without changing the

pattern of sign changes.

For example, if p(x) = x5 − 5x+ 1 then p′(x) = 5(x4 − 1) and we get the Sturm sequence (note

p1 = p′/5 for convenience)

x5 − 5x+ 1, x4 − 1, 4x− 1, 1.

Actually the last term is 1− 1/256, but it is positive.

(2.5) Lemma Suppose that pi(x), 0 ≤ i ≤ k, is a Sturm sequence. Then no two consecutive polyno-

mials in the sequence can vanish at the same point.

In other words, if α is a real number such that pi(α) = 0 for some i, then i < k and pi+1(α) 6= 0.

Proof. Suppose otherwise, so pi(α) = pi+1(α) = 0. The Sturm sequence imitates the sequence of

polynomials developed in calculating gcd(p, p′) (the polynomials in each sequence are proportional).

Since gcd(p, p′) = 1, i < k. Since pi(α) = pi+1(α) = 0, x − α divides pi(x) and pi+1(x); then it

divides pj(x) for every j ≥ i, and pk(x) is not constant, a contradiction.

(2.6) Theorem (Sturm’s Theorem.) Suppose that p is a non-constant polynomial and gcd(p, p′) =
1. Let a < b be two real numbers which are not roots of p. Then the number of real roots between a
and b equals the number of sign changes lost between a and b.

In the above example, as a → −∞ and b → ∞ the sign patterns are

−+−+

and ++++, so there are exactly three real roots.

Proof of Sturm’s Theorem. Let p0, p1, . . . , pk be the Sturm sequence.

Imagine a variable z moving from a to b. We are interested in what happens at a point z where

pi(z) = 0 for some i. By Lemma 2.5, i < k, pi+1(z) 6= 0, and, if i > 0, pi−1(z) 6= 0.

If i > 0, then pi−1(z) and pi+1(z) are nonzero with opposite signs, and pi(x) changes sign at z.

If ǫ is sufficiently small, pi changes sign only once between z − ǫ and z + ǫ, and the other two don’t

change sign in that interval.

There are four possible patterns for sign changes:

4

pi−1(z − ǫ) pi(z − ǫ) pi+1(z − ǫ) pi−1(z) pi(z) pi+1(z) pi−1(z + ǫ) pi(z + ǫ) pi+1(z + ǫ)
+ + − + 0 − + − −
+ − − + 0 − + + −
− + + − 0 + − − +
− − + − 0 + − + +

There is one sign change before, and there is one after. The number of sign changes does not

change.

On the other hand, if z is a root of p(x), then either p(x) crosses the x-axis from below, in which

case p′(z) > 0, or it crosses the x-axis from above, in which case p′(z) < 0. So the possibilities are:

p0(z − ǫ) p1(z − ǫ) p0(z) p1(z) p0(z + ǫ) p1(z + ǫ)
− + 0 + + +
+ − 0 − − −

Thus in this case alone, the number of sign changes decreases by one.

Example. This example is hard to work through by hand, but here are the results.

Polynomial and its derivative:

2x5 + 3x4 − 2.6x3 + 4x2 − 4.6x+ 1

10x4 + 12x3 − 7.8x2 + 8x− 4.6

Sturm sequence (adjusted so highest-degree coefficient is ±1)

x5 + 1.5x4 − 1.3x3 + 2x2 − 2.3x+ 0.5

x4 + 1.2x3 − 0.78x2 + 0.8x− 0.46

x3 − 1.62955x2 + 2.36364x− 0.725

−x2 + 3.51887x− 1.08464

−x+ 0.34996

−1

4 sign changes at -infty: -+-+--

4 sign changes at -5.000000: -+--+-

4 sign changes at -4.000000: -+--+-

4 sign changes at -3.000000: -+--+-

3 sign changes at -2.000000: ++--+-

3 sign changes at -1.000000: +---+-

3 sign changes at 0.000000: +---+-

1 sign changes at 1.000000: ++++--

1 sign changes at 2.000000: ++++--

1 sign changes at 3.000000: ++++--

1 sign changes at 4.000000: +++---

1 sign changes at 5.000000: +++---

1 sign changes at +infty: +++---

Conclusion: there are three real roots, one between −3 and −2, and two between 0 and 1.

5

3 Newton-Raphson

The Newton-Raphson method calculates, very efficiently, approximations to simple roots (simple

zeroes) of a differentiable function f .

The idea is simple: if a is close to a root, then the tangent line to the graph at a is a good

approximation to f near a, and, almost certainly, it cuts the x-axis at a point closer to the root.

The tangent line to the graph at a — more correctly, at (a, f(a)) — has the equation

y = f(a) + (x− a)f ′(a)

Obviously, if f ′(a) = 0 we’re stuck. Otherwise it crosses the x-axis at

f(a) + (x− a)f ′(a) = 0

f(a)

f ′(a)
= a− x

x = a−
f(a)

f ′(a)

So

The Newton-Raphson method develops a sequence a0, a1, a2, . . . where a0 is suitably chosen, and

for j = 1, 2, . . .

aj+1 = aj −
f(aj)

f ′(aj)

Example f(x) = x2 − 2.

a = 1

a=a/2+1/a; a

1.50000000000000000000

a = a/2+1/a; a

1.41666666666666666666

a=a/2+1/a; a

1.41421568627450980392

a=a/2+1/a; a

1.41421356237468991062

a=a/2+1/a; a

1.41421356237309504880

a=a/2+1/a; a

1.41421356237309504880

3.1 Rate of convergence of the Newton-Raphson method.

Suppose that |aj − r| = ǫ, where ǫ is small and r is a nearby (simple) root.

The following estimate is Taylor’s Theorem with n = 1.

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(X)

6

where X is somewhere between a and x. Now, if x is the root we’re approximating, f(r) = 0; and if

a is one of the approximations aj , we divide by f ′(aj) and get

f(aj)

f ′(aj)
+ r − aj + (r − aj)

2 f
′′(X)

2f ′(aj)
= 0

and substituting aj+1 where it fits, we get

r − aj+1 = M(r − aj)
2

where M is related to f ′(x) and f ′′(x). Usually we can fix an upper bound on M (in absolute value).

The point is,

Roughly speaking, the error in aj+1 is the square of the error in aj .

— generally speaking, the Newton-Raphson method produces accurate results very quickly.

4 Floating-point format

Decimal points work this way:

123.456 = 1× 102 + 2× 101 + 3× 100 + 4× 10−1 + 5× 10−2 + 6× 10−3.

Such numbers are called fixed-point decimal to distinguish them from floating point or scientific

notation.

We can allow ‘binary points’ with a similar aim. As binary numbers:

101.011 = 1× 22 + 0× 21 + 1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3.

Or (in decimal) 4 + 1 + 1/4 + 1/8 = 5 3/8 = 5.375.

In science and engineering, the accuracy of measurement is taken as a proportion. For example,

to measure a the radius of a golfball correct to the nearest centimetre is not impressive, but to measure

the radius of the earth to the nearest centimetre, is.

In science and engineering, numbers are often given in scientific notation. For example, the speed

of light is about 186,000 miles per second. In scientific notation, this would be represented as

1.86× 105

(or something like 1.86E5). The significand is 1.86 and the exponent is 5.

There are sign, significand (at least 1 and less than 10), and exponent.

FAQ: You say that numbers should be represented this way. What about zero?

Answer. Zero is an exception. Zero is the only number which cannot be represented by sign,

significand, and exponent.

7

On computers, this idea is adapted to the binary system. Thus

101.011 = 1.01011× 23.

On the left, we have fixed-point binary, on the right we have floating-point binary.

• Sign

• Significand at least 1 and less than 2.

• Exponent.

• Zero is an exception.

These are called floating-point numbers.

Computing a binary significand by hand. The significand has the form (zero an exception)

1.a1a2a3 . . . where the figures aj are binary digits (called ‘bits’ for short).

The trick is to ‘pull’ the number to the left by repeated doubling. For example, let us try 4/3.

4

3
= 1 + 1/3 . . . 1. Drop the 1 and double

2/3 = 0 + 2/3

4/3 = 1 + 1/3

2/3 = 0 + 2/3

1.010101 . . .

How can we check this? Summing a geometric series

1.010101 . . . = 1 +
1

4
+

1

16
+

1

64
. . . =

1

1− 1/4
=

4

3
.

We’re reckoning fractions as fixed-point binary. The answer is always a finite or recurring binary

pattern.

Here’s a messier example. To compute 20/11 as binary fixed-point.

20 18 14 12 16 20

9 7 3 6 1 2 4 8 5 10 9

Idea. Keep doubling the number. If the result is ≥ 11, it goes on the top line, and one subtracts

11 to get the figure below it. If the result is < 11, it goes directly on the bottom line.

Note that the pattern recurs (it recurs at the original number, 20, but the recurring pattern could

start later in the expansions).

In the binary expansion, where there’s something on the top line, there’s a 1 in the binary expan-

sion; where the top entry is blank, there’s a 0.

8

1. 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0

20 18 14 12 16 20

9 7 3 6 1 2 4 8 5 10 9

As a recurring pattern:

1.(1101000101)∗

As a geometric series

1 + 837×

(
1

1024
+

1

220
. . .

)
= 1 +

837

1023
=

20

11
.

4.1 Computing binary significands, last time.

Given a number x (which might even be irrational) with 1 ≤ x < 2, in binary it is

a0.a1a2a3 . . .

and of course a0 = 1.

The digits aj are calculated as follows.

x0 = x

for j = 1, 2, . . .

aj = [xj] (integer part of xj)

xj+1 = 2× (xj − aj)

4.2 Floating point numbers on computer.

There are single precision, 32 bits long, and double precision, 64 bits long. The data is split up

differently for the different precisions.

(4.1) Definition Suppose a nonzero floating-point number has significand 1.a1a2 . . . ak. The bit-

string a1 . . . ak is called the mantissa.

Since the first bit in the significand of a nonzero number is always 1, it is omitted from the man-

tissa.

The breakdown is as follows.

Single precision: 1 + 8 + 23.

Double precision: 1 + 11 + 52.

This means: 1 bit for sign 8 (resp., 11) for exponent, and 23 (resp., 52) for mantissa. This gives

precision of about 6 (respectively, 15) decimal places.

9

4.3 Sign bit

Simply: 0 for positive, 1 for negative.

4.4 Exponent

8-bit binary numbers range from 0 to 255, and 11-bit binary numbers range from 0 to 2047, ‘face-

value.’ The range is adjusted by subtracting the ‘bias,’ 127 or 1023.

size subnormal/zero negative zero positive infinite/NaN

8-bit biased 0 1 . . . 126 127 128 . . . 254 255

less bias −127 −126 . . .− 1 0 1 . . . 127 128
11-bit biased 0 1 . . . 1022 1023 1024 . . . 2046 2047

less bias −1023 −1022 . . .− 1 0 1 . . . 1023 1024

4.5 Rounding

Suppose x is a nonzero real number with significand

1.a1a2 . . . a23a24 . . .

probably with infinitely many digits. There are several schemes for rounding when calculating the

mantissa. The simplest is ‘round towards zero’:

mantissa a1a2 . . . a23.

Slightly better, and this is the scheme ordinarily used, is to ‘round.’ It is equivalent to:

If a24 = 0, round towards zero.

If a24 = 1, add 2−23. This is equivalent to adding 1 to the mantissa, if the mantissa is interpreted

at face value.

Example. Calculate the single-precision floating point representation of −5/22.

The sign bit is 1.

The absolute value is less than 1. Multiply it by a power of 2 to get it into the range 1 . . . 2.

5/22× 2× 2× 2 = 20/11.

5/22 = 2−3 × 20/11.
20/11 will give the significand. It has already been computed.

1.(1101000101)∗

so the mantissa is

1101000101 1101000101 110 100 . . .

So a24 = 1. Add 1 to the first 23 bits.

1101 0001 0111 0100 0101 110

+ 1

1101 0001 0111 0100 0101 111

10

The true exponent is −3. The biased exponent is 124. Subtract 3 (binary 11) from 127 (

0111 1111) getting 0111 1100.

Combining all of these together,

1 0111 1100 1101 0001 0111 0100 0101 111

Put them in groups of four.

1011 1110 0110 1000 1011 1010 0010 1111

4.6 Hexadecimal numbers

Hexadecimal numbers are to base 16, and are used for a more compact representation of binary

numbers.

The ‘hex digits’ are 0 . . . 9, and a . . . f for 10 . . . 15.

0000 0 0100 4 1000 8 1100 c

0001 1 0101 5 1001 9 1101 d

0010 2 0110 6 1010 a 1110 e

0011 3 0111 7 1011 b 1111 f

This gives

1011 1110 0110 1000 1011 1010 0010 1111

b e 6 8 b a 2 f

4.7 Little endian

One more detail — which is not important — is that on Intel computers the numbers are stored ‘little

endian’. Computer memory is a collection of bytes, each byte being 8 bits or 2 hex digits. In ‘little

endian’ form, the bytes are stored in reverse order (not the hex digits, though), giving

2f ba 68 be

Summarising

-5/22 = 2^{-3} x 20/11

negative: sign 1

exponent -3 biased 0111 1100

mantissa

1101 0001 0111 0100 0101 110 1 ... round up

result 23 ba 68 be hex, little endian.

Converting the same number to double precision is not much harder.

11

sign 1

exponent -3 biased 011 1111 1100

mantissa

1101 0001 0111 0100 0101 1101 0001 0111 0100 0101 1101 0001 0111... 0100 0101

round down

1101 0001 0111 0100 0101 1101 0001 0111 0100 0101 1101 0001 0111

combined

1011 1111 1100 1101 0001 0111 0100 0101 1101 0001 0111 0100 0101 1101 0001 0111

b f c d 1 7 4 5 d 1 7 4 5 d 1 7

little endian

17 5d 74 d1 45 17 cd bf

5 IEEE standard

The IEEE standard for binary floating-point arithmetic was produced by group p754 in 1985. It was

revised in the more general p854 in 1987.

Recall that the single-precision format is

sign 1 bit, exponent 8 bits, mantissa 23 bits

and double-precision

sign 1 bit, exponent 11 bits, mantissa 52 bits

About 6.9 and 15.6 decimal places. Single-precision is seldom used, but we’ll focus on it.

The range of biased exponents is 0..255, so the true exponent range is

−127 to 128.

Exponents −127 and 128 have special meanings

−127: ±0 if the mantissa is zero, otherwise subnormal numbers which will not concern us.

128: ±∞ if the mantissa is zero, otherwise NaN (‘not a number.’)

(5.1) Definition A floating-point number (single-precision) is any number of the form

±b0.b1 . . . b23 × 2e

where the bi are bits (binary digits) and −126 ≤ e ≤ 127, and if nonzero, b0 = 1 (the hidden bit).

We say that single-precision floating-point numbers have 24 bits of precision, allowing for the

hidden bit. Single-precision machine accuracy, machine-epsilon ǫmach, is defined as follows

1 + ǫmach

is the smallest floating-point number > 1. I.e.,

1.0000 0000 0000 0000 0000 001

in binary, i.e., ǫmach = 2−23

Also, Nmin is the smallest positive floating-point number and Nmax the largest:

Nmin = 1.7× 10−38

Nmax = 1.7× 1038

12

approximately

A nonzero real number x is in normalised floating-point range if

Nmin ≤ |x| ≤ Nmax.

5.1 Rounding

Given a real number x, not a floating-point number, let x− and x+ be the nearest floating-point

numbers to x, so

x− < x < x+.

These nearest numbers could be zero or infinite, but we’re most concerned with numbers in nor-

malised floating-point range. With little loss of generality, x is positive in normalised floating-point

range. In this case, write x as

2e × 1.b1b2 . . . b23 | b24b25 . . .

Obviously,

x− = 2e × 1.b1b2 . . . b23

and

x+ = 2e × (1.b1b2 . . . b23 + 2−23)

There are various rounding rules: round up, round down, round to zero, round to nearest. The last

is the default and will concern us.

Round to nearest. If x is a floating-point number then round(x) = x. Ignoring the possibilities

of rounding to infinity, if x is positive,

round(x) =





x− if x− < x < (x− + x+)/2

x+ if (x− + x+)/2 < x < x+

x− or x+ if x = (x− + x+)/2.

The last is ambiguous, and there is a tie-breaking rule:

When x = (x−+x+)/2, one of x−, x+ has 0 in the low-order position of the mantissa (least significant

bit), and the other has 1; choose the one with 0 in the low-order position of the mantissa.

If x is negative, apply the rounding rule to |x|.

(5.2) Definition If x 6= 0 then its relative rounding error is

∣∣∣∣
x− round(x)

x

∣∣∣∣ .

13

If x 6= 0 is in normalised range, so

x = ±2e1.b1 . . . b24b25 . . .

Suppose that |x| rounds down: round(|x|) < |x|. Then the relative rounding error is

2−240.b24b25 . . .

1.b1b2 . . .
≤ 2−24

If |x| rounds up, the relative rounding error is

2−241− 0.b24b25 . . .

1.b1b2 . . .
≤ 2−24

Thus:

(5.3) Proposition round to nearest rounds to relative error at most ǫmach/2.

5.2 The IEEE requirement.

The sum of two single-precision numbers need not be a single-precision number. For example, 1 +
2−24 is not.

1.0000 0000 0000 0000 0000 000 x 2ˆ0

+1.0000 0000 0000 0000 0000 000 x 2ˆ{-24}

1.0000 0000 0000 0000 0000 000 1 x 2ˆ0

But the machine is obliged to produce a floating-point answer. Write ⊕,⊖,⊗,⊘ for the machine’s

result.

The IEEE standard requires that whenever x and y are floating point numbers (so round(x) = x
and round(y) = y),

x⊙ y = round(x · y)

where ⊙ is one of the four arithmetic operations3

5.3 Adding and subtracting single-precision numbers (nonzero)

Exact addition of positive – or negative – floating-point numbers can be accomplished if we make

the mantissas long enough. Correctly rounded addition can be accomplished with a few extra bits

(beyond the usual 24). First suppose we are given two positive floating point numbers x and y.

x = 2e × 1.a1a2 . . . a23 | 0 0 0 . . .

y = 2f × 1.b1b2 . . . b23 | 0 0 0 . . .

3 Modular arithmetic and square roots are also discussed.

14

First, one must line up the binary points. Without loss of generality, e ≥ f .

x = 2e×1.a1a2 . . . a23 | 0 0 0 . . .

y = 2e× 0.0 0 0 . . . 0 1 b1b2 . . . b23 0 0 0 . . .

If e− f > 24, then

x = 2e × 1.a1a2 . . . a23 | 0 0 0 . . .

y = 2e × 0.0 0 0 . . . 0 | 0 . . . 1 b1b2 . . . b23 0 0 0 . . .

That is, x ⊕ y = x. If the exponents differ by more than 24, the smaller number is effectively

zero.

More generally, to compute x ⊕ y, where the exponent difference is ≤ 24, one shifts one to the

right and makes the exponents equal. Without loss of generality, y has smaller exponent. Since the

shift is ≤ 24, x⊕ y can be calculated exactly in 48 bits.

But we can do with less than that.

x = 2e × 1.a1a2 . . . a23 | 0 0 0 . . .

y = 2e × 0.0 0 0 b0 . . . bi−1 | bibi+1 . . . b23 0 0 0 . . .

Possibly i = 0 and the first 24 bits in y are zero; b0 = 1.

• If bi = 0 then the sum is rounded down and bits bi+1 . . . b23 may be ignored. We call the bit bi
the guard bit.

• If the guard bit bi is 1, and any bit beyond bi is nonzero, then the sum is rounded up. Otherwise

the rounding can be up or down. A sticky bit is needed to indicate whether there are any other

nonzero bits. The sticky bit is 1 if any of bi+1, . . . , b23 is nonzero.

• This is where x and y are both positive, and obviously where they both have the same sign.

Where they have opposite sign, or subtracting like signs, it is necessary to retain bi+1 as well.

This is called the round bit.

These notes are based on ‘Numerical computing with IEEE floating point arithmetic,’ by Michael

L. Overton, which is on reserve at the Hamilton Library counter.

6 Meeting the IEEE standard

The three extra bits mentioned, guard, round, sticky, are together called GRS.

• The four arithmetic operations +,−,×, / need to be implemented in hardware as ⊕,⊖,⊗,⊘.

• We suppose given two positive single-precision floating-point numbers

x = 2e×a0.a1a2 . . . a23

y = 2f×b0.b1b2 . . . b23

15

• Of course, a0 = 1 and b0 = 1: x and y are normalised floating-point numbers.

• Since the sign bits are easily changed, there is no loss of generality in assuming x and y are

positive. In that case,

Nmin ≤ x, y ≤ Nmax.

• We only consider addition and subtraction.

• Again because of sign bits, we can assume that x ≥ y.

6.1 Addition

If x and y have the same exponent, e = f , then we can add the significands directly.

1.a1a2 . . . a23

+ 1.b1b2 . . . b23

There is no problem here: the sum is

1d0.d1 . . . d23

which needs to be normalised (shifted and rounded), increasing the exponent. Further steps need be

taken if e = f = 127, making the sum infinite.

Ignore such possibilities.

Conclusion: if x and y are positive with the same exponent then x⊕ y is easily computed.

Otherwise, since x > y, e > f and the significands should be aligned.

1.a1a2 . . . a23 | 0 0 0 . . .

0.0 0 . . . 1 b1b2 . . . b23

If e − f > 24, then all the nonzero bits in the shifted significand are too far right, the sum is

rounded down, and the result is x.

Otherwise, e− f ≤ 24.

1.a1a2 . . . a23 | 0 0 0 . . .

0.0 0 . . . | bi . . . b23 0 0 0 . . .

Here

i = 24 + f − e

Possibly e− f = 24, so i = 0; b0 = 1.

In any case,

• G: The guard bit is bi

• R: The round bit is bi+1

16

• S: The sticky bit is 0 if bi+2, . . . , b23 are all zero, else it is 1.

Suppose the significands are added fully. The result will be

d−1d0.d1 . . . d23 | bibi+1 . . . b23

where d−1 = 1 if the sum is at least 2. In the latter case the sum is shifted and the exponents adjusted

(maybe ∞. . .)

d−1.d0d1 . . . | d23bibi+1 . . . b23

Clearly, the GSR bits together give enough information to produce x⊕ y.

(6.1) Corollary Given single-precision floating-point numbers x, y of like sign, x⊕ y can be calcu-

lated (correctly rounded) using 24 bits plus the GSR bits.

(Actually, the round bit has no independent significance for adding FPNs of like sign: it could be

absorbed into the sticky bit.)

6.2 Subtraction

Given positive FPNs x > y > 0 with exponents e and f as before, how is x⊖y computed? As before,

the significand is adjusted, and exponents, by shifting the bits in y to the right.

The following example shows the need for a round bit, i.e., b24 in this case.

1.0000 0000 0000 0000 000 | 0000× 20

− 1.0000 0000 0000 0000 001 | 0000× 2−2

Shift:

1.0000 0000 0000 000 | 0000× 20

− 0.10000 0000 0000 000 | 01000× 20

Subtract significands:

1.0000 0000 0000 0000 000 000

- 0.0100 0000 0000 0000 000 010

0.1011 1111 1111 1111 111 11

Shift to normalise

1.011 1111 1111 1111 1111 1

The left shift has moved the guard bit into the mantissa and the round bit adopts the rôle of guard bit.

This happens when a left shift is needed to normalise. A longer left shift could be needed, and it

would seem to require further bits to be held for rounding.

17

Where, after shifting, the difference in significands is small:

0.00 . . . 00d0d1 . . .

But the significand in x is at least 1.000 Write c0.c1c2 . . . for the shifted significand of y, and

make x as small as possible. Also, suppose that y has been shifted right two or more places.

1.0 0 0 . . .

0.0 c2 . . .

The difference is at least 1/2:

0.1d2d3 . . .

and the left shift, to normalise the difference, is exactly 1 — in other words, if the difference is small

then only a small shift was applied to y. We have not exactly proved the following result, but it should

be fairly plausible by now.

(6.2) Corollary Given single-precision floating-point numbers x and y, x ⊕ y and x ⊖ y can be

calculated correctly rounded using a guard bit, a round bit, and a sticky bit. All three GRS bits are

needed.

6.3 Multiplication and division

There are convoluted ways of speeding up these operations on a chip, — which led to the Pentium

bug — but nothing simple. It appears that one must work with 48 bits.

7 The numbers γn

Given n ∈ N (nonnegative integers), where nǫmach < 1,

γn =
nǫmach

1− nǫmach

.

(7.1) Lemma If 0 ≤ m ≤ n < 1/ǫmach, then

γm ≤ γn.

Proof. Let x = mǫmach and y = nǫmach, so 0 ≤ x ≤ y < 1.

γm =
x

1− x

1 + γm =
1

1− x

1 + γn =
1

1− y
.

Since 0 < 1− y < 1− x ≤ 1, 1/(1− x) ≤ 1/(1− y), so 1 + γm ≤ 1 + γn and γm ≤ γn.

18

(7.2) Definition Product notation Given numbers n1, . . . , nk,

k∏

1

ni

is an abbreviation for the product

n1 × n2 × . . .× nk

(Possibly k = 0, in which case the product takes the default value 1).

The following result is very important.

(7.3) Theorem Given n real numbers δj , where

0 ≤ |δj| ≤ ǫmach, (1 ≤ j ≤ n),

and nǫmach < 1,
n∏

j=1

(1 + δj)
±1 = 1 + θ,

where |θ| ≤ γn.

We shall prove it in stages.

(7.4) Lemma Suppose 0 ≤ δ ≤ ǫmach. Then

1 ≤
1

1− δ
≤ 1 + γ1.

Proof.

1 ≤
1

1− δ
≤

1

1− ǫmach

1

1− ǫmach

= 1 +
ǫmach

1− ǫmach

= 1 + γ1

(7.5) Lemma Suppose 0 ≤ δ ≤ ǫmach. Then

1− γ1 ≤
1

1 + δ
≤ 1.

Proof.

1 + ǫmach ≥ 1 + δ ≥ 1 + δ − 2ǫmachδ

1− ǫmach ≥ 1 + δ − 2ǫmachδ − 2ǫmach

= (1 + δ)(1− 2ǫmach)

1

1 + δ
≥

1− 2ǫmach

1− ǫmach

= 1−
ǫmach

1− ǫmach

= 1− γ1.

19

(7.6) Corollary If |δ| ≤ ǫmach then

1− γ1 ≤
1

1 + δ
≤ 1 + γ1.

(7.7) Lemma If 0 ≤ r, s ∈ N and (r + s)ǫmach < 1, then

1 ≤ (1 + γr)(1 + γs) ≤ 1 + γr+s.

Proof.

1 + γr = 1 +
rǫmach

1− rǫmach

=
1

1− rǫmach

and similarly for the other terms; so

(1 + γr)(1 + γs) =
1

1− (r + s)ǫmach + rsǫ2mach

≤
1

1− (r + s)ǫmach

= 1 + γr+s.

(7.8) Corollary If n ∈ N and 0 ≤ nǫmach < 1 then

(1 + γ1)
n ≤ 1 + γn.

Proof. Induction on n. When n = 0 this is equivalent to: 1 = 1. For induction,

(1 + γ1)
n+1 ≤ (1 + γn)(1 + γ1) ≤ 1 + γn+1.

(7.9) Lemma If 0 ≤ r, s ∈ N and (r + s)ǫmach < 1, then

1− γr+s ≤ (1− γr)(1− γs) ≤ 1

Proof. The inequality is

1− 2(r + s)ǫmach

1− (r + s)ǫmach

≤

(
1− 2rǫmach

1− rǫmach

)(
1− 2sǫmach

1− sǫmach

)

There seems to be no shortcut here — multiply out. The calculations (if correct) make the inequality

equivalent to the true inequality

3rsǫ2 + 6rs(r + s)ǫ3 ≥ 0.

(7.10) Corollary If nǫmach < 1 then

(1− γ1)
n ≥ 1− γn.

Proof by induction, like Corollary 7.8.

Proof of Theorem 7.3. For each of the terms

(1 + δj)
±1,

1− γ1 ≤ (1 + δj)
±1 ≤ 1 + γ1.

Hence

(1− γ1)
n ≤

∏

j

(1 + δj)
±1 ≤ (1 + γ1)

n.

By Corollaries 7.8 and 7.10,

1− γn ≤
∏

j

(1 + δj)
±1 ≤ 1 + γn.

20

8 Accuracy of summation

We sum a series

S =
n∑

1

xj

in the obvious way

x1 ⊕ x2

(x1 ⊕ x2)⊕ x3 . . .

Let us call the rounded sum Ŝ.

The rounding errors accumulate. We want upper bounds on the total error. According to IEEE

p754,4

x1 ⊕ x2 = (x1 + x2)(1 + δ1),

where 0 ≤ |δ1| ≤ ǫmach. Next

(x1 ⊕ x2)⊕ x3 = ((x1 ⊕ x2) + x3)(1 + δ2),

where 0 ≤ |δ2| ≤ ǫmach. And so on. Expanding, the computed sum is

Ŝ = (x1 + x2)(1 + δ2) · · · (1 + δn) + x3(1 + δ3) · · · (1 + δn) + . . .+ xn(1 + δn)

Ŝ − S = x1((1 + δ2) · · · (1 + δn)− 1) + x2((1 + δ3) · · · (1 + δn)− 1) + . . .

Referring to the γn estimates, unless n ≥ 1/ǫmach — ridiculously large —

|Ŝ − S| ≤ |x1|γn−1 + |x2|γn−2 + . . .+ |xn|γ1

But γn−1 ≥ γn−2 . . . (Lemma 7.1.

Therefore

|Ŝ − S| ≤ γn−1

∑

j

|xj|.

It is interesting to find cases where the results are inaccurate despite these guarantees. Here is a

simple example: variance (and standard deviation).

There are two ways to compute variance — ‘1 pass’ and ‘2 pass.’ The disadvantage of the 2-pass

approach is that the numbers need to be read twice. The definition of sample mean and variance of a

list x1, . . . , xn of numbers is as follows:

4We have forgotten the factor of 1/2 under round to nearest. Also, it makes little sense to use single-precision

arithmetic here, so ǫmach is usually 2
−52. Single precision floating-point numbers are used where memory is scarce, such

as on satellites or graphics chips.

21

x = x1, . . . , xn

x =
1

n

n∑

i=1

xi

var(x) =
1

n− 1

n∑

i=1

(x− x)2.

Algebraically,

var(x) =
1

n− 1

(
(

n∑

i=1

x2
i)− n(x)2

)
.

The expression on the right gives the ‘1-pass’ method, since you can calculate
∑

x2
i and

∑
xi at the

same time. Numerically, it is much less reliable.

One can try this with, say, 100 numbers, all close to 1,000,000. Since the numbers are positive,

the sample mean is computed with a relative error of at most

γ100.

which is small both for single- and double-precision numbers.

If to make life easy we ignore the small error in computing the sample mean, the 2-pass sample

variance, which is simply a sum followed by a division, is also computed to an accuracy of γ100.

But the 1-pass sample variance computes
∑

x2
i with a small relative error, again γ100 — but —

the sum is about 100,000,000,000,000 or 1014. This is really stretching double-precision accuracy

(15 decimal digits) and makes nonsense of single-precision accuracy (6).

Here are the results.

double precision

n 100 mean 1000000.546875

1 pass variance 0.080956 standard deviation 0.284528

2 pass variance 0.082258 standard deviation 0.286807

single precision

n 100 mean 1000000.187500

1 pass variance 302885.781250 standard deviation 550.350586

2 pass variance 0.212713 standard deviation 0.461208

9 Linear equations and matrices

There are procedures for describing the full set of solutions to m linear equations in n unknowns, but

we only consider n equations in n unknowns which admit a unique solution. For example

x+ 2y = 3

4x+ 5y = 6

22

Using matrix notation, this would be written

[
1 2
4 5

] [
x
y

]
=

[
3
6

]
.

An n × n (real) matrix is an n × n array of real numbers enclosed in brackets for legibility. The

array has m rows and n columns. Put another way, m is its width and n is its height.

Matrices of the same shape can be added or subtracted, but that is not important. Compatible

matrices can be multiplied.

(9.1) Definition A k × ℓ matrix A and an m× n matrix B are compatible if ℓ = m. In other words,

the width of A and the height of B coincide. In this case the matrix product is defined. It is a k × n
matrix.

One can write A = [ars]k×m to indicate that ars is the entry in the r-th row and s-th column of A.

Given B = [bst]m×n, the product matrix

AB = [crt]k×n :

crt =
m∑

s=1

arsbst.

Rather than saying ‘A and B are compatible,’ we usually say ‘AB is defined.’

Clearly AB could be defined and not BA; in fact, they are both defined if and only if they are

square matrices of the same size. Even when they are, AB and BA could be different. Matrix

multiplication is not commutative.

Matrix multiplication is associative, though: A(BC) = (AB)C when either product is defined

— in this case both products are defined.

(9.2) Definition R
m×n is the set of all m× n real matrices.

When n = 1 we have column vectors of height n, and when m = 1 we have row vectors of width

m.

So let us relate this to the matrix equation.

[
1 2
4 5

] [
x
y

]
=

[
3
6

]
.

Multiply the left-hand side according to matrix multiplication rules

[
x+ 2y
4x+ 5y

]
=

[
3
6

]
.

which is just right.

Actually, matrices are often used to define linear maps. For example the matrix

[
1√
2

− 1√
2

1√
2

1√
2

]

23

can be interpreted as ‘45◦ rotation about the origin in R
2 — the Euclidean plane.’ The matrix




1 0 0
0 1 0
0 0 1




encodes the identity map, and is given the name ‘3× 3 identity matrix’;




1 0 0
0 1 0
0 0 −1




is reflection in the xy-plane;




1 0 0
0 1 0
0 0 0




is vertical projection onto the xy-plane within R
2; and

[
1 0 0
0 1 0

]

is a projection of R3 onto R
2. This is our only example involving non-square matrices.

9.1 EROs and Gauss-Jordan elimination

A system of linear equations

A




x1

x2

•
•
xn



=




b1
b2
•
•
bn




(where A is an n× n matrix) can be solved by forming the augmented matrix of the system

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
· · ·
an1 an2 . . . ann bn

(This is an n× (n+1) matrix, but as it is ‘stand-alone,’ there is no need to surround it with brackets,)

and to use elementary row operations (EROs) to bring the augmented matix to what is called reduced

row-echelon form. The operations are

• Scale a row by a nonzero constant

• Swap two different rows

• Subtract from one row a multiple of another row (not the same row).

24

The reduced row-echelon form we want is where the first n columns form the identity matrix. This

is not always possible, but it is when the set of equations has exactly one solution.

Let us take our example of 2 equations in 2 unknowns.

Clear the first column, then the second

1 2 3 call it row 1 1 2 3 subtract 2 x row 2

4 5 6 - 4 x row 1 0 -3 -6 / (-3) call result row 2

Both columns cleared

1 0 -1 RREF

0 1 2

EROs preserve equations, and the RREF says

x = −1

y = 2

The procedure could grind to a halt, when there are no solutions or more than one.

1 2 3 1 R1 1 2 3 1 -2 R2 1 0 -1 -1

4 5 6 1 -4 R1 0 -3 -6 -3 /(-3)=R2 0 1 2 1

7 8 9 1 -7 R1 0 -6 -12 -6 +6 R2 0 0 0 0

At this stage, we are stuck, because we cannot use a33 to clear the third column. As it happens, this

system has infinitely many solutions, but there could just as easily be no solution.

10 Gaussian elimination

Here is a 3× 4 augmented matrix.

1 -1 4 9

3 -1 10 25

1 0 2 6

Gauss-Jordan elimination:

1 -1 4 9 =R1

3 -1 10 25 -3 R1 (mistake in earlier draft)

1 0 2 6 - R1

1 -1 4 9 + R2

0 2 -2 -2 /2=R2

0 1 -2 -3 - R2

1 0 3 8 - 3 R3

0 1 -1 -1 + R3

0 0 -1 -2 *-1=R3

25

1 0 0 2 rref: x = 2, y = 1, z = 2.

0 1 0 1

0 0 1 2

Gaussian elimination aims to reduce the first n rows and columns to an upper triangular matrix. It

does not scale the diagonal elements. It does not clear the column above the diagonal elements. It

does use ‘pivoting,’ unlike the example below.

1 -1 4 9 =R1

3 -1 10 25 -3 R1

1 0 2 6 - R1

1 -1 4 9

0 2 -2 -2 =R2

0 1 -2 -3 - 1/2 R2

1 -1 4 9 (correcting a mistake in an earlier draft).

0 2 -2 -2

0 0 -1 -2 finished

To solve for x, y, z, use back substitution.

−z = −2; z = 2

2y − 2z = −2; 2y − 4 = −2; 2y = 2; y = 1

x− y + 4z = 9; x− 1 + 8 = 9; x = 2

This calculation did not use pivoting, so it was not exactly Gaussian elimination. ‘Pivoting’ means

always making the diagonal element as large as possible by swapping the ‘current’ row with a lower

row, if necessary. (This is ‘partial pivoting.’ There’s something else called ‘full pivoting,’ but it is not

used much.)

1 -1 4 9 swap

3 -1 10 25 swap

1 0 2 6

3 -1 10 25 =R1

1 -1 4 9 -1/3 R1

1 0 2 6 -1/3 R1

3 -1 10 25

0 -2/3 2/3 2/3 = R2

0 1/3 -4/3 -7/3 + 1/2 R2

3 -1 10 25

0 -2/3 2/3 2/3

0 0 -1 -2 finished

26

Back substitution

−z = −2; z = 2

−2y/3 + 4/3 = 2/3; y = 1

3x− 1 + 20 = 25; x = 2

Pivoting is a strategy to reduce rounding error. The strategy is to try and make the diagonal

elements large. The reason is simply that when solving, one divides by the diagonal elements; if you

divide by a small number, you can create a relatively large error.

‘Large’ means large in absolute value: for example, −1010 is large and 10−10 is small.

For example, suppose ε is a small positive number. Given the following augmented matrix

ε 1 1
−1 1 0

Without pivoting, and with exact arithmetic, we get

ε 1 1
0 1 + 1

ε
1
ε

Back substituting

1 + ε

ε
y =

1

ε
y =

1

1 + ε

εx = 1− y =
1 + ε− 1

1 + ε
x =

1

1 + ε

All very well, but if ε is small then rounding error causes problems. For example, suppose that the

calculations are single-precision floating-point and ε = 2−25. Then the rounded calculations become

ε 1 1
0 1

ε
1
ε

The difference is that 1⊕ 1/ε = 1/ε.

Then

y = 1

εx+ 1 = 1; x = 0

Although y is correctly rounded, x couldn’t be more wrong. If pivoting is used:

−1 1 0
ε 1 1

−1 1 0
0 1 + ε 1

and 1⊕ ε = 1:
−1 1 0
0 1 1

whence x = y = 1. This time x and y are correctly rounded.

27

11 LU factorisation

Gaussian elimination aims to reduce the first n rows and columns to an upper triangular matrix. It

does not scale the diagonal elements. It does not clear the column above the diagonal elements. It

does use ‘pivoting.’

Repeat the non-pivoting Gaussian elimination example; this time, apply the same EROs to the

identity matrix

1 -1 4 9 =R1 1 0 0

3 -1 10 25 -3 R1 0 1 0

1 0 2 6 - R1 0 0 1

1 -1 4 9 1 0 0

0 2 -2 -2 =R2 -3 1 0

0 1 -2 -3 - 1/2 R2 -1 0 1

1 -4 4 9 1 0 0

0 2 -2 -2 -3 1 0

0 0 -1 -2 finished 1/2 -1/2 1

Convention. The equations are understood to take the form Ax = b when matrices are used.

The augmented matrix consist of A with b appended as the last column. Also, U will mean the

corresponding upper-triangular matrix.

Using the usual arguments about EROs and elementary matrices, we know that

U = MA

where M is the lower-triangular matrix on the right. We write A = LU , where L = M−1. This is

an LU -factorisation of A. U is an upper-triangular matrix; M is a lower-triangular matrix with 1s on

the main diagonal. So is L (the properties hold for the inverse). We can calculate L quite easily, by

solving for a, b, c below.

LM = I :



1 0 0
a 1 0
b c 1






1 0 0
−3 1 0
1/2 −1/2 1


 =




1 0 0
0 1 0
0 0 1




a− 3 = 0; a = 3

c− 1/2 = 0; c = 1/2

b− 3/2 + 1/2 = 0; b = 1

L =




1 0 0
3 1 0
1 1/2 1




What happens if there is pivoting?

28

1 -1 4 9 swap 1 0 0

3 -1 10 25 swap 0 1 0

1 0 2 6 0 0 1

3 -1 10 25 =R1 0 1 0

1 -1 4 9 -1/3 R1 1 0 0

1 0 2 6 -1/3 R1 0 0 1

3 -1 10 25 0 1 0

0 -2/3 2/3 2/3 = R2 0 -1/3 0

0 1/3 -4/3 -7/3 + 1/2 R2 1/2 -1/3 1

3 -1 10 25 0 1 0

0 -2/3 2/3 2/3 0 -1/3 0

0 0 -1 -2 finished 1/2 -1/2 1

Because rows were swapped, the matrix M is not upper triangular. We’ll come back to that later.

Now it is possible to calculate the LU factorisation directly, and where there is no pivoting it is

quite easy. Just follow this order:

• First row of U

• First column of L

• Second row of U

• Second column of L

• etcetera

For example,




1 0 0
3 1 0
1 1/2 1







1 −1 4
3 −1 10
1 0 2


 =




1 0 0
a 1 0
b c 1






d e f
0 g h
0 0 i




d = 1; e = −1; f = 4




1 −1 4
3 −1 10
1 0 2


 =




1 0 0
a 1 0
b c 1






1 −1 4
0 g h
0 0 i




a = 3; b = 1.

29




1 −1 4
3 −1 10
1 0 2


 =




1 0 0
3 1 0
1 c 1






1 −1 4
0 g h
0 0 i




−3 + g = −1; g = 2

12 + h = 10; h = −2




1 −1 4
3 −1 10
1 0 2


 =




1 0 0
3 1 0
1 c 1






1 −1 4
0 2 −2
0 0 i




−1 + 2c = 0; c = 1/2




1 −1 4
3 −1 10
1 0 2


 =




1 0 0
3 1 0
1 1/2 1






1 −1 4
0 2 −2
0 0 i




4− 1 + i = 2; i = −1




1 −1 4
3 −1 10
1 0 2


 =




1 0 0
3 1 0
1 1/2 1






1 −1 4
0 2 −2
0 0 −1




11.1 Analysis of LU factorisation

(11.1) Definition If A = [aij]m×n is a (real) matrix, then its absolute value matrix is the matrix

[|aij|]m×n

One writes the absolute value matrix of A as

|A|

(This notation could be confusing; sometimes |A| is used for the determinant of A.)

(11.2) Proposition Suppose A is an n× n (invertible) matrix. Let A = LU be the LU factorisation

of A (without pivoting). In the presence of rounding errors, approximations L̂ and Û are computed.

Then the rounding errors satisfy

|LU − L̂Û | ≤ γn|L̂||Û |.

30

Proof for the second-easiest case, n = 2,

[
a b
c d

]
=

[
1 0
e 1

] [
f g
0 h

]

We compute the first row of U , the first column of L, the second row of U , the second column of

L (nothing to do there)

The first row of U equals that of A:

f = a; g = b

For the first column of L,

c = ef ; e = c/f = c/a

And the second row of U :

eg + h = d; h = d− eg = d− (c/a)b

Write ê for the rounded form of e. Remember that x ⊕ y is the correctly rounded floating-point

sum of floating-point numbers x and y. Similarly ⊖,⊗,⊘.

f̂ = a; ĝ = b

ê = c⊘ f̂

ĥ = d⊖ ê⊗ ĝ

We need to prove the following inequality (all the numbers are floating-point).

|A− L̂Û | ≤ γ2|L̂||Û |.

Actually, it seems that for the 2× 2 case, we can replace γ2 by γ1.
5

In other words,6

[
0 0

|c− êf̂ | |d− êĝ − ĥ|

]
≤ γ1

[
|a| |b|

|ê||f̂ | |ê||ĝ|+ |ĥ|

]

in other words

|c− êf̂ | ≤ γ1|ê||f̂ |, and |d− êĝ − ĥ| ≤ γ1(|ê||ĝ|+ |ĥ|).

Recall the important theorem: if |δi| ≤ ǫmach for 1 ≤ i ≤ n, and nǫmach < 1, then

n∏

i=1

(1 + δi)
±1 = 1 + θ,

where |θ| ≤ γn.

5There could be a mistake in the calculation. If so, it will be corrected in due course.
6We’re sticking with γ1.

31

The first inequality is easy. f̂ = f = a (exactly) and ê = c⊘ f :

ê =
c

f
(1 + δ1)

where |δ1| ≤ ǫmach. Then (again note f̂ = f)

êf̂ = c(1 + δ1)

c =
êf̂

1 + δ1

c− êf̂ = êf̂

(
1

1 + δ1
− 1

)

|c− êf̂ | ≤ γ1|ê||f̂ |,

as required.

The other inequality is harder.

h = d− eg

ĥ = d⊖ ê⊗ ĝ = (d− êĝ(1 + δ2))(1 + δ3)

ĥ

1 + δ3
= d− êĝ(1 + δ2)

ĥ

1 + δ3
+ êĝ(1 + δ2) = d

d− ĥ− êĝ = ĥ

(
1

1 + δ3
− 1

)
+ êĝ(1 + δ2 − 1)

|d− ĥ− êĝ| ≤ γ1(|ê||ĝ|+ |ĥ|),

as required.

11.2 Inaccuracy

Applied without pivoting to the array [
ε 1
1 1

]

we get [
1 0
1
ε

1

] [
ε 1
0 1− 1

ε

]

Using single-precision, with ε = 2−25, 1− 1/ε = −1/ε:

L̂Û =

[
1 0
1
ε

1

] [
ε 1
0 −1

ε

]
=

[
ε 1
1 0

]

32

So LU − L̂Û = [
0 0
0 1

]
,

A non-negligible error. This can be reconciled with the upper bound, because |L̂||Û | contains a large

entry:

|L̂||Û | =

[
ε 1
1 2

ε

]
.

Pivoting would have reduced the error enormously.

12 LU , permutation matrices, and pivoting

A permutation of 1, 2, . . . , n is a bijective map from this set to itself. For example,

1 7→ 1, 2 7→ 4, 3 7→ 2, 4 7→ 3

or, in more compact form,

1 7→ 1, 2 7→ 4 7→ 3 7→ 2

is an example.

In Gaussian elimination with pivoting, EROs ‘swap’ and ‘subtract’ can be used (no scaling):

• Form the n× (n+ 1) augmented matrix, call it M0.

• Swap rows 1 and 1′ where 1′ ≥ 1 (possibly 1′ = 1).

• Apply ‘subtract’ operations to reduce the first column.

• Swap rows 2 and 2′.

• Apply ‘subtract’ operations to reduce the second column.

• Etcetera. . . until the n− 1-st column is reduced (then we have upper triangular form) U .

The same effect could be obtained differently, if with hindsight you knew the sequence 1′, 2′, 3′ . . . (n−
1)′.

• Swap rows 1 and 1′ in M0, producing a matrix M1. Then swap rows 2 and 2′ in M1, producing

a matrix M2. And so on, until a matrix Mn−1 is produced. Mn−1 is a row-permuted version of

the augmented matrix M0.

• Apply subtract operations, possibly different from the previous ones because of the rows being

swapped, to produce the same upper triangular form U .

(12.1) Corollary Gaussian elimination with partial7 pivoting on an augmented matrix M is equiva-

lent to Gaussian elimination without pivoting on some row-permuted copy of M .

LU -factorisation of a square matrix A with pivoting (whatever that means) is equivalent to LU -

factorisation without pivoting of a row-permuted version of A.

7The qualifier ‘partial’ had been mistakenly omitted previously. With partial pivoting, the rows can be permuted. One

can also have ‘full pivoting’ where the columns can be permuted as well. In practice it doesn’t seem to be used much.

33

Repeat LU factorisation without pivoting on the matrix

1 2 3
4 5 6
7 8 10

A =




1 2 3
4 5 6
7 8 10


 = LU =




1 0 0
? 1 0
? ? 1






? ? ?
0 ? ?
0 0 ?




The first row of U equals that of A.




1 2 3
4 5 6
7 8 10


 =




1 0 0
? 1 0
? ? 1






1 2 3
0 ? ?
0 0 ?




The first column of L can be completed.




1 2 3
4 5 6
7 8 10


 =




1 0 0
4 1 0
7 ? 1






1 2 3
0 ? ?
0 0 ?




From the second row of L the second row of U can be computed.




1 2 3
4 5 6
7 8 10


 =




1 0 0
4 1 0
7 ? 1






1 2 3
0 −3 −6
0 0 ?




From the second column of U the third row, second column of L can be computed.




1 2 3
4 5 6
7 8 10


 =




1 0 0
4 1 0
7 2 1






1 2 3
0 −3 −6
0 0 ?




From the third row of L the third row of U can be computed.




1 2 3
4 5 6
7 8 10


 =




1 0 0
4 1 0
7 2 1






1 2 3
0 −3 −6
0 0 1


 .

Let us apply Gaussian elimination with pivoting to an augmented matrix with A in the first 3
columns.

1 2 3 3 swap 7 8 10 16 = R1

4 5 6 9 4 5 6 9 - 4/7 R1

7 8 10 16 swap 1 2 3 3 - 1/7 R1

7 8 10 16 7 8 10 16

0 3/7 2/7 -1/7 swap 0 6/7 11/7 5/7 = R2

0 6/7 11/7 5/7 swap 0 3/7 2/7 -1/7 - 1/2 R2

34

7 8 10 16 z = 1; y = -1; x = 2.

0 6/7 11/7 5/7

0 0 -7/14 -7/14

Apply the same eros to the 3x3 identity matrix. Without pivoting, this would be a lower-triangular

matrix, L−1. What is it?

1 0 0 swap 0 0 1 = R1

0 1 0 0 1 0 - 4/7 R1

0 0 1 swap 1 0 0 - 1/7 R1

0 0 1 0 0 1

0 1 -4/7 swap 1 0 -1/7 = R2

1 0 -1/7 swap 0 1 -4/7 -1/2 R2

0 0 1

1 0 -1/7

-1/2 1 -7/14

This is easy enough to invert. . .




0 0 1
1 0 −1/7

−1/2 1 −1/2




−1

=




1/7 1 0
4/7 1/2 1
1 0 0


 .

Pivoting can also be applied to LU factorisation. What it means is that a row-permuted version

of A can be factorised as LU .

If we apply just the swap operations above, to the 3 × 3 identity matrix, in the given order, we

obtain a permutation matrix P .

1 0 0 swap 0 0 1

0 1 0 0 1 0 swap

0 0 1 swap 1 0 0 swap

0 0 1

P: 1 0 0

0 1 0

If C is any matrix of height 3, then PC is the corresponding row-permuted version of C. Also, P is

an orthogonal matrix: P−1 = P T .

Partial pivoting amounts to swapping rows of A, and parts of rows of L. Take the same example

again.

A =




1 2 3
4 5 6
7 8 10


 = LU =




1 0 0
? 1 0
? ? 1






? ? ?
0 ? ?
0 0 ?




35

Swap rows 1 and 3 of L, to bring up the pivot element. Then the first row of A matches that of U .




7 8 10
4 5 6
1 2 3


 =




1 0 0
? 1 0
? ? 1






7 8 10
0 ? ?
0 0 ?




The first column of L can be completed.




7 8 10
4 5 6
1 2 3


 =




1 0 0
4/7 1 0
1/7 ? 1






7 8 10
0 ? ?
0 0 ?




Now we consider pivoting on the second row. That is, perhaps the second and third rows should

be swapped to increase the absolute value of u22.

If we swap, we must swap within the first column of L. Without swapping,

(4/7)8 + u22 = 5, u22 = 3/7

and with swapping

(1/7)8 + u22 = 2, u22 = 6/7

which is larger (in absolute value): we swap.




7 8 10
1 2 3
4 5 6


 =




1 0 0
1/7 1 0
4/7 ? 1






7 8 10
0 6/7 ?
0 0 ?




Then 10/7 + u23 = 3 or u23 = 11/7.




7 8 10
1 2 3
4 5 6


 =




1 0 0
1/7 1 0
4/7 ? 1






7 8 10
0 6/7 11/7
0 0 ?




There is no question of pivoting again. (4/7)(8) + (6/7)ℓ32 = 5, so ℓ32 = 1/2.




7 8 10
1 2 3
4 5 6


 =




1 0 0
1/7 1 0
4/7 1/2 1






7 8 10
0 6/7 11/7
0 0 ?




Then (4/7)10 + (1/2)(11/7) + u33 = 6, u33 = −1/2.




7 8 10
1 2 3
4 5 6


 =




1 0 0
1/7 1 0
4/7 1/2 1






7 8 10
0 6/7 11/7
0 0 −1/2




Summarising: LU factorisation with pivoting of a matrix A results in

LU = PA

where P is a permutation matrix. P can be computed by applying the swap operations in the correct

order on the identity matrix.

36

13 Accuracy of linear equation solutions

Errors in calculation are of two types (three if one includes data measurement errors).

• Truncation errors, such as is inevitable when the Newton-Raphson method has to be stopped af-

ter finitely many steps. In Simpson’s Rule, truncation error depends on the step-size. Similarly,

truncation errors are inevitable in the QR−RQ method.

• Rounding errors, inevitable with floating-point calculation, whether single- or double-precision.

Gaussian elimination is more-or-less equivalent to

• To solve Ax = b

• Form the LU factorisation of A (or, with partial pivoting, on a row-permuted version of A).

• Solve Ly = b.

• Solve Ux = y.

(13.1) Proposition Solving Ux = y produces a rounded answer x̃ such that

(U +∆U)x̃ = y

where |∆U | ≤ γn|U |. Similarly: solving Ly = b. (No proof.)

(13.2) Corollary Solving Ax = b produces a rounded solution x̃ such that

(A+∆A)x̃ = b

where |∆A| ≤ γ3n|A|.

Proof. Write ∆1 for the matrix L̃Ũ − A. We know

|∆1| ≤ γn|L̃||Ũ |.

Now, solving Ly = b — we don’t solve Ly = b, we solve L̃y = b, an approximation to the correct

equation, and the solution ỹ is an approximation to the solution to L̃y = b. Referring to the above

proposition,

(L̃+∆L̃)ỹ = b

where |∆L̃| ≤ γn|L̃|. Next, solving

Ũx = ỹ

produces x̃, where

(Ũ +∆Ũ)x̃ = ỹ

Composing these results

(L̃+∆L̃)(Ũ +∆Ũ)x̃ = b

37

Multiply out and replace L̃Ũ by A+∆1:

(A+∆1 +∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ)x̃ = b

(A+∆A)x̃ = b, where

∆A = ∆1 +∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ

Applying the estimates for ∆1, ∆L̃, and ∆Ũ , we get

|∆A| ≤ (3γn + γ2
n)|L̃||Ũ |.

The coefficient is

3ǫmach

1− ǫmach

+
n2ǫ2mach

(1− nǫmach)2
=

3n(1− nǫmach)ǫmach + n2ǫ2mach

(1− nǫmach)2
=

3nǫmach − 2n2ǫ2mach

(1− nǫmach)2
≤

3nǫmach

(1− nǫmach)2
≤

3nǫmach

1− 2nǫmach

≤ γ3n.

Backward error analysis. Experts in the field say that it is often easier to relate the approximate

solution to a problem to the exact solution to a nearby problem.

For example, suppose Ux = b were solved with approximate solution x̃. We may write ∆x for

x− x̃. The forward error would be ∆x. On the other hand, if we produce a related matrix ∆U such

that (U +∆U)x̃ = b exactly, analysis of ∆U would be called backward error analysis.

(13.3) Definition If M is an invertible matrix, then its condition matrix is

|M−1||M |

(remember |M | is a matrix with nonnegative entries).

(13.4) Lemma For any compatible matrices M,N ,

|MN | ≤ |M ||N |

— for example,

[
1 −2
3 4

] [
5 −6
7 8

]
=

[
−9 −22
43 14

]

[
1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]

and [
9 22
43 14

]
≤

[
19 22
43 50

]
.

38

U∆x = (∆U)x̃

∆x = U−1∆Ux̃

|∆x| ≤ γn|U
−1||U ||x̃|.

If the condition matrix has large entries, then computations can be inaccurate. Here is a triangular

matrix with large condition matrix:

[
ǫ 1
0 ǫ

]

Its inverse is

[
(1/ǫ) −1/ǫ2

0 1/ǫ

]

Its condition matrix is

[
1 2/ǫ
0 1

]

14 Numerical integration

This means approximate integration, based on the fact that

∫ b

a

f(x)dx

is the signed area between the graph of the curve and the x-axis, or more precisely

lim
N→∞

N−1∑

i=0

f(a+ i(b− a)/N)

N
.

At least, this is so if f is continuous. (Integrating discontinuous functions has fascinated analysts for

a century.)

The Trapezoidal method approximates f by a piecewise-linear function, passing through the

points (xi, f(xi)). The area between xi and xi+1 is the area of a trapezoid, hence the name. It is

((yi + yi+1)/2)×∆xi.

Adding we get
(b− a)

2N
(y0 + 2y1 + . . .+ 2yN−1 + yN).

For example, with f(x) = 4/(1 + x2), a = 0, b = 1, and N = 4, the Trapezoidal method yields

1

8
(4 + 8

16

17
+ 8

4

5
+ 8

16

25
+ 2) = 3.1311,

a rather bad approximation to π.

39

The Trapezoidal Method is based on approximating a function by a piecewise-linear function.

Accuracy can be improved, using the same data-points, by approximating a function by a piecewise-

quadratic function, a piecewise-cubic function, and so on.

Given n + 1 points (xi, yi), where the xi are all distinct, there is a unique polynomial of de-

gree ≤ n whose graph passes through these points. (If curious to know more, look up Lagrangian

Interpolation.)

We want to integrate such a polynomial with n = 2 and xi = a + ih where h, the steplength,

= ∆xi = (b−a)/2. In other words, y0, y1, y2 are given and x0, x1, x2 are a, a+h, a+2h respectively.

(x2 = b).
Suppose c = x1 = (a+ b)/2 and write the interpolating polynomial as a polynomial in x− c:

A(x− c)2 + B(x− c) + C.

Then

∫ b

a

(A(x− c)2 + B(x− c) + C)dx =

∫ h

−h

(Ax2 + Bx+ C)dx =
2Ah3

3
+ 2Ch.

Also,

A(−h)2 + B(−h) + C = y0, A(0)2 + B(0) + C = y1, and A(h)2 +B(h) + C = y2.

C = y1, B is irrelevant, and 2Ah2 = y0 − 2C + y2, so A = (y0 − 2y1 + y2)/2h
2. The approximate

integral is
h(y0 − 2y1 + y2)

3
+ 2y1h =

h

3
(y0 + 4y1 + y2) .

If we are given an even number N of intervals, and we apply this formula to consecutive pairs of

intervals, the sum is

b− a

3N
((y0 + yN) + 4(y1 + y3 + . . .) + 2(y2 + y4 . . .))

which is Simpson’s Rule.

Applied to the previous data, the Simpson’s Rule approximation for π is

1

12
(4 + 16

16

17
+ 8

4

5
+ 16

16

25
+ 2) = 37.698823/12 = 3.1415685,

which is far more accurate than the Trapezoidal Rule provides.

Truncation error. The trapezoidal method uses a linear interpolant

a0 + a1(x− a).

It resembles a degree-1 Taylor polynomial, but a1 6= f ′(a). The following result is similar to Taylor’s

Theorem (up to linear terms).

Even for the Trapezoidal method, it is hard to estimate the error. Here is an ‘order of magnitude’

estimate.

40

(14.1) Notation g(x) is O((x− a)k) means (roughly)

lim
x→a

g(x)

(x− a)k
< ∞

(14.2) Lemma If g(x) is O((x− a)k), then
∫ b

a
g(x)dx is O((b− a)k+1.

(14.3) Lemma (i) The truncation error in a single step of the Trapezoidal method is O((b− a)3).
(ii) The truncation error with steplength h = (b− a)/N is O(h2).

Proof uses Taylor’s Theorem. (i) The trapezoidal method computes the integral of the polyno-

mial

a0 + a1(x− a) = f(a) + (x− a)
f(b)− f(a)

b− a

and, from the mean value theorem, a1 = f ′(c) for some c between a and b.
From Taylor’s Theorem

f(x) = a0 + (x− a)f ′(a) +O((x− a)2).

∫ b

a

(f(x)− a0 − a1(x− a)) = (f ′(a)− f ′(c))
(b− a)2

2
+O((b− a)3).

On the other hand, f ′(c) − f ′(a) = (c − a)f ′′(d) for some d between a and c, so it is O(b − a),
and (f ′(a)− f ′(c))(b− a)2/2 is also O((b− a)3). This proves (i).

(ii): Total error over N steps is O(Nh3) from (i), which is O(h2). Q.E.D.

Here is a more useful estimate, from the textbooks:

(14.4) Corollary Given an upper bound M on |f ′′(ξ)| over [a, b], the absolute-value error in the

Trapezoidal method is bounded by
M(b− a)

12
h2.

For example, a laborious calculation (unreliable) with f(x) = 4/(1 + x2), a = 0, b = 1, shows

M = 8. The error bound for the Trapezoidal-method estimate of π (N = 4) is

8

12
,

which is consistent with the data.

Simpson’s Rule can be treated in the same way. The details are even more laborious than with the

Trapezoidal method.

These results can be found in Analysis of Numerical Methods, by Isaacson and Keller. It’s not an

easy book to read, being full of cross-references. It would take about 3 pages of these notes to repeat

the analysis, and we don’t. But here is the error estimate:

41

(14.5) Lemma The error in Simpson’s Rule is bounded by

M(b− a)

90
h4,

where M is the maximum value of |f (4)(x)| over [a, b].

In particular, if f is a cubic polynomial, then Simpson’s rule is exact because f (4)(x) ≡ 0. This

is easily checked.

It would be instructive to apply this to the calculation of π, but we would need to calculate the

fifth derivative of 1/(1 + x2), which would take some time. Maple, or no doubt Mathematica, would

easily furnish the answer.

Using Maple, it appears that the fourth derivative absolute value maximum in is 24, giving an

error estimate of
1

15× 215
= .0005249

15 ODEs

We consider only the following initial value problem

dy

dx
= f(x, y); y(a) = c.

We want an approximate solution over the interval [a, b].
For example

dy

dx
= y; y(0) = 1

has the solution y = ex.
The crudest and obvious numerical solution is to choose a stepsize h = (b− a)/N, again

xi = a+ ih, 0 ≤ i ≤ N,

and calculate approximations

yi to y(xi),

beginning of course with y0 = c,
— using ∆yi = (yi+1 − yi)/h as a substitute for y′(xi). Then for 1 ≤ m ≤ N,

ym − ym−1

h
= f(xm−1, ym−1),

or

(15.1) ym = ym−1 + hf(xm−1, ym−1).

This is the Euler method. It is meant, of course, to give approximate answers where a closed-

form solution is unknown, or where we want values for the closed-form solution. Let us apply it to

42

the familiar dy/dx = y, y(0) = 1 equation, with b = 1 and h = 1/N . Here it is easy to work out

exactly what gets calculated (ignoring rounding errors, of course).

ym = ym−1 + hym−1.

or

ym = (1 + h)ym−1,

so clearly

ym = (1 + h)m.

Recalling that h = 1/N , we get

yN =

(
1 +

1

N

)N

.

It can be shown using a McLaurin Series and the Binomial Theorem that the right-hand side converges

to e as N → ∞, so ym is an approximation to em/N = exm , as it should be.

Here is the data with N = 10.

Euler method

x_m = 0.000000, y_m = 1.000000, eˆx - y = 0.000000

x_m = 0.100000, y_m = 1.100000, eˆx - y = 0.005171

x_m = 0.200000, y_m = 1.210000, eˆx - y = 0.011403

x_m = 0.300000, y_m = 1.331000, eˆx - y = 0.018859

x_m = 0.400000, y_m = 1.464100, eˆx - y = 0.027725

x_m = 0.500000, y_m = 1.610510, eˆx - y = 0.038211

x_m = 0.600000, y_m = 1.771561, eˆx - y = 0.050558

x_m = 0.700000, y_m = 1.948717, eˆx - y = 0.065036

x_m = 0.800000, y_m = 2.143589, eˆx - y = 0.081952

x_m = 0.900000, y_m = 2.357948, eˆx - y = 0.101655

x_m = 1.000000, y_m = 2.593742, eˆx - y = 0.124539

Accuracy of this method. If ym = y(xm) then

y(xm+1)− ym+1 = O(h2)

by Taylor’s Theorem. Suppose x0 = a and xN = x0+Nh = b. The accumulated error at b is roughly

O(
∑

h2) = O(Nh2) = O(h).

The accuracy is linear in h.

15.1 Explicit trapezoidal method

Euler’s method is analogous to approximating an integral using a bar-chart, whereas the trapezoidal

method uses a piecewise-linear approximation and Simpson’s rule uses a piecewise-quadratic approx-

imation.

43

If we knew ym+1 exactly, which is ridiculous, a better estimate of the derivative would be the

average at ym and ym+1. We can’t do that, but we can, so to speak, plug in the Euler version of ym+1

and use it to get a better-balanced estimate of the derivative.

This leads to the explicit trapezoid method, aka improved Euler method or Heun method: Let

a = f(xm, ym) and b = f(xm + h, ym + hf(xm, ym)).

ym+1 = ym +
h

2
(a+ b)

It can be shown that the per-step error in the improved Euler method is O(h3). Applying it to

solving dy/dx = y, y(0) = 1:

x_0 = 0.000000, y_0 = 1.000000, e^x - y = 0.000000

x_1 = 0.100000, y_1 = 1.105000, e^x - y = 0.000171

x_2 = 0.200000, y_2 = 1.221025, e^x - y = 0.000378

x_3 = 0.300000, y_3 = 1.349233, e^x - y = 0.000626

x_4 = 0.400000, y_4 = 1.490902, e^x - y = 0.000923

x_5 = 0.500000, y_5 = 1.647447, e^x - y = 0.001275

x_6 = 0.600000, y_6 = 1.820429, e^x - y = 0.001690

x_7 = 0.700000, y_7 = 2.011574, e^x - y = 0.002179

x_8 = 0.800000, y_8 = 2.222789, e^x - y = 0.002752

x_9 = 0.900000, y_9 = 2.456182, e^x - y = 0.003421

x_10 = 1.000000, y_10 = 2.714081, e^x - y = 0.004201

Much better than the ordinary Euler method.

16 Taylor’s Theorem

(16.1) Proposition (Taylor’s Theorem) Making certain assumptions about the existence and conti-

nuity of the derivatives of a function f(x) near x = a,

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) +

(x− a)2

3!
f (3)(a) + . . .+

(x− a)n

n!
f (n)(a)

+
(x− a)n+1

(n+ 1)!
f (n+1)(X)

for some X between a and x.

For example, if we take f(x) = (1 + x)3 and a = 0,

f(0) = 1

f ′(0) = 3

f ′′(0) = 6

f ′′′(0) = 6

f ′′′′(0) = 0

44

so

(1 + x)3 = 1 + 3x+ 3x2 + x3 + 0

the remainder term being zero.

If we take f(x) = sin(x), a = 0,

f(0) = 0f ′(0) = 1f ′′(0) = 0f ′′′(0) = −1

and the pattern repeats in blocks of 4.

sin(x) = x−
x3

3!

x5

5!
+ . . .+

xn+1

(n+ 1)!

f (n+1)(X)

(n+ 1)!

The remainder term is bounded by 1/(n + 1)! in absolute value — the series converges quickly if x
is reasonably small.

While Taylor’s Theorem is a little tricky to prove, there is a similar result (Cauchy form of the

remainder) which one can prove using integraton by parts.

We shall show how to prove a slightly different version of Taylor’s Theorem, based on the method

of integration by parts

d

dt
(uv) = u

dv

dt
+ v

du

dt∫
u
dv

dt
dt = uv −

∫
v
du

dt
dt

Now

f(x) = f(a) +

∫ x

a

f ′(t)dt

Using (this may look a little odd)

d

dt
(t− x)f ′(t) = f ′(t) + (t− x)f ′′(t)

we get

[(t− x)f ′(t)]xa =

∫ x

a

f ′(t)dt+

∫ x

a

(t− x)f ′′(t)dt

(x− a)f ′(a) =

∫ x

a

f ′(t)dt+

∫ x

a

(t− x)f ′′(t)dt

f(x) = f(a) + (x− a)f ′(a)−

∫ x

a

(t− x)f ′′(t)dt

Using
d

dt

(t− x)2

2!
f ′′(t) = (t− x)f ′′(t) +

(t− x)2

2!
f ′′′(t)

45

we get

[
(t− x)2

2!
f ′′(t)

]x

a

=

∫ x

a

(t− x)f ′′(t)dt+

∫ x

a

(t− x)2

2!
f ′′′(t)dt

−
(x− a)2

2!
=

∫ x

a

(t− x)f ′′(t)dt+

∫ x

a

(t− x)2

2!
f ′′′(t)dt

−

∫ x

a

(t− x)f ′′(t)dt =
(x− a)2

2!
f ′′(a) +

∫ x

a

(t− x)2

2!
f ′′′(t)dt

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) +

∫ x

a

(t− x)2

2!
f ′′′(t)

This is easily generalised by induction to

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x− a)n

n!
f (n)(a) +

∫ x

a

(x− a)n

n!
f (n+1)(t)dt

This is the Cauchy form of the remainder. The other, more commonly used, version can be deduced

using arguments based on continuity.

17 Partial derivatives

If f(x, y) is a bivariate function then, under certain continuity assumptions, one can define partial

derivatives

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
∂f

∂y
= lim

k→0

f(x, y + k)− f(x, y)

k

They are no harder to compute than ordinary derivatives: when computing ∂f/∂x, treat y as a con-

stant; for ∂f/∂y, treat x as a constant.

For example,

f(x, y) = xy + cos(x/y)

∂f

∂x
= y −

1

y
sin(x/y)

∂f

∂y
= x+

x

y2
sin(x/y)

There are forms of Taylor’s Theorem for two variables and more. In particular, if f is continuously

differentiable,

f(x+ h, y + k) = f(x, y) + h
∂f

∂x
+ k

∂f

∂y
+O(h2 + k2)

46

18 Runge-Kutta methods

We begin with one of the simpler Runge-Kutta schemes.

y0 = c

g1 = f(xm−1, ym−1)

g2 = f(xm−1 + αh, ym + βhg1)

ym = ym−1 + h(A1g1 + A2g2),

where h = (b− a)/N is the step-size and α, β,A1, A2 are constants.

There is some freedom in choosing these constants. We shall derive some relations involving

them which will ensure that the method has O(h3) error in each step.

The choice of these constants is based on Taylor’s Series.

y(xm) = y(xm−1) + hy′(xm−1) +
h2

2
y′′(xm−1) +O(h3).

Now, y′(x) = f(x, y) and

y′′(x) =
d

dx
f(x, y) =

∂

∂x
f(x, y) + y′(x)

∂

∂y
f(x, y) =

∂

∂x
f(x, y) + f(x, y)

∂

∂y
f(x, y).

Therefore

y(xm) =

y(xm−1)

+hf(xm−1, y(xm−1))

+
h2

2

(
∂

∂x
f(xm−1, y(xm−1)) + f(xm−1, y(xm−1))

∂

∂y
f(xm−1, y(xm−1))

)

+O(h3).

Given g1 = f(xm−1, ym−1) and

g2 = f(xm−1 + αh, ym−1 + βg1h),

we can expand g2 as a Taylor’s series:

g2 = f(xm−1, ym−1) + αh
∂f

∂x
(xm−1, ym−1) + βhf(xm−1, ym−1)

∂f

∂y
(xm−1, ym−1) +O(h2).

Then if ym = ym−1 + h(A1g1 + A2g2),

ym =

ym−1

+hA1f(xm−1, ym−1)

+hA2

(
f(xm−1, ym−1) + αh

∂f

∂x
(xm−1, ym−1) + βhf(xm−1, ym−1)

∂

∂y
f(xm−1, y(xm−1))

)

+O(h3).

47

Assuming ym−1 is correct, i.e., ym−1 = y(xm−1), we can compare terms and conclude





A1 + A2 = 1

A2α = 1
2

A2β = 1
2
.

There is some freedom of choice of these constants.

When A1 = 0, we get the modified Euler method:

g1 = f(xm, ym), g2 = f(xm + h/2, ym + hg1/2)

ym+1 = ym + hg2

Heun’s method A1 = A2 = 1/2, α = β = 1.

g1 = f(xm, ym), g2 = f(xm + h, ym + hg1)ym+1 = ym + h(g1 + g2)/2

The modified Euler method has already been demonstrated.

Accuracy of this Runge-Kutta method. The error term at each step is O(h3) (Taylor’s Theo-

rem), hence the cumulative error is O(h2).

18.1 A very good Runge-Kutta method

s1 = f(xi, yi)

s2 = f(xi + h/2, yi + hs1/2)

s3 = f(xi + h/2, yi + hs2/2)

s4 = f(xi + h, yi + hs3)

yi+1 = yi +
h

6
(s1 + 2s2 + 2s3 + s4)

The stepwise error is O(h4), cumulative O(h3) (much too hard to analyse). Applying it again to

the initial value problem dy/dx = y, y(0) = 1:

x_0 = 0.000000, y_0 = 1.000000, e^x - y = 0.000000

x_1 = 0.100000, y_1 = 1.105171, e^x - y = 0.000000

x_2 = 0.200000, y_2 = 1.221403, e^x - y = 0.000000

x_3 = 0.300000, y_3 = 1.349858, e^x - y = 0.000000

x_4 = 0.400000, y_4 = 1.491824, e^x - y = 0.000000

x_5 = 0.500000, y_5 = 1.648721, e^x - y = 0.000001

x_6 = 0.600000, y_6 = 1.822118, e^x - y = 0.000001

x_7 = 0.700000, y_7 = 2.013752, e^x - y = 0.000001

x_8 = 0.800000, y_8 = 2.225540, e^x - y = 0.000001

x_9 = 0.900000, y_9 = 2.459601, e^x - y = 0.000002

x_10 = 1.000000, y_10 = 2.718280, e^x - y = 0.000002

48

0 1/3

.271604938

Figure 1: bracketing the root: not to scale.

19 More on Newton-Raphson

It is usually possible to measure the accuracy of one’s Newton-Raphson approximation to a root of

f(x), using the Mean Value Theorem.

If r is a root and a is an approximation to t, we know that f(r) = 0, and also

f(r) = f(a) + (r − a)f ′(X)

for some X between r and a. Therefore

r = a−
f(a)

f ′(X)

exactly, except that we usually don’t know what X is. But if we

• know some reasonably small interval [x0, x1] containing r, and

• the sign of f ′(x) is unchanged over [x0, x1],

• no, better still, that f ′(x) is strictly incrasing or strictly decreasing on the interval, and doesn’t

change sign, then

• r lies between a− f(a)/f(x0) and a− f(a)/f(x1).

We shall apply this to the problems on the first quiz.

The function p(x) = 10x3 − 5x2 − 3x+ 1.

Sequence

0, 1/3, 0.271604938, 0.276372283, 0.276393202

and p(a) = 0 to calculator accuracy where a is last on list.

One thing which should have been checked at the start is that there is one sign change at 1/3, so

the root we want is in the interval (0, 1/3).
The sign of p is positive at 0 and negative at 1/3, so over this interval the sign of p is positive to

the left of r and negative to its right.

A calculation shows that f ′(x) changes sign only once in [0, 1], at .524126. Also, f ′′(x) changes

sign only at 1/6 (inflection). See Figure 1.

To be completed. It will turn out that (working with computer bc calculator to 10 places decimal)

the root is between

.2763932017 + .0000000014/f

49

where 3 < f < 3.5. This means adding 4 or 5 to the last place;

.2763932021

or

.2763932022

(rounded up).

Explanation. Let a = .2763932017; p(a) = .0000000014. Between .1666666667 and .524126,

p′(x) is negative and (f ′′(x) = 60x− 10) increasing.

Since there is one root r in the interval of interest, and p changes from + to − at r, in the interval,

x is left of r if and only if p(x) > 0.

Thus a < r, and since p′ is increasing to −3 at 1/3, p′(a) is a lower bound for p′(X) between a
and 1/3. Since p′(a) = −3.472135958650,

a+ .0000000014/3.472135958650 ≤ r ≤ a+ .0000000014/3

a+ .000000000403 ≤ r ≤ a+ .000000000466

.276393202103 ≤ r ≤ .276393202166

(to 12 decimal places).

20 Draft syllabus for 2015 exam

• The overall mark will take 20% coursework and 80% in the May exam.

The May exam will have 4 questions of which you will be

asked to answer 3.

• Euclid’s gcd algorithm

• Sturm sequences, Sturm’s theorem (possible proof asked)

• Newton-Raphson (see extra notes)

• Converting fractions to floating-point format, with answer in hex.

• IEEE standard, with emphasis on the guard, round, sticky bits applied to toy examples. Also,

Nmax etcetera for toy examples.

• The numbers γn and theorem 7.3, which might be asked.

• Accuracy of summation (proof might be asked).

• Gaussian elimination and partial pivoting.

• LU factorisation: be able to to this on 2x2 and 3x3 matrices, even with pivoting. Know Propo-

sition 11.2 and how to apply it to 2x2 examples, but the proof will not be asked.

50

• Numerical integration. Accuracy of the Trapezoidal method, using Taylor’s Theorem. Know

Simpson’s Rule and its accuracy.

• Proof of Taylor’s Theorem will not be asked.

• ODEs. Euler’s Method. You may be asked to prove the O(h2) per-step accuracy, using Taylor’s

Theorem.

• Runge-Kutta methods. You may be asked to prove the O(h3) per-step accuracy of the given

kinds of Runge-Kutta, using various flavours of Taylor’s Theorem.

• The best method: be able to apply it and the other three methods covered in the module, for

comparison.

51

	GCD
	A digression

	Sturm's Theorem
	Newton-Raphson
	Rate of convergence of the Newton-Raphson method.

	Floating-point format
	Computing binary significands, last time.
	Floating point numbers on computer.
	Sign bit
	Exponent
	Rounding
	Hexadecimal numbers
	Little endian

	IEEE standard
	Rounding
	The IEEE requirement.
	Adding and subtracting single-precision numbers (nonzero)

	Meeting the IEEE standard
	Addition
	Subtraction
	Multiplication and division

	The numbers n
	Accuracy of summation
	Linear equations and matrices
	EROs and Gauss-Jordan elimination

	Gaussian elimination
	LU factorisation
	Analysis of LU factorisation
	Inaccuracy

	LU, permutation matrices, and pivoting
	Accuracy of linear equation solutions
	Numerical integration
	ODEs
	Explicit trapezoidal method

	Taylor's Theorem
	Partial derivatives
	Runge-Kutta methods
	A very good Runge-Kutta method

	More on Newton-Raphson
	Draft syllabus for 2015 exam

