Mathematics 1262 (introduction to C++), Hilary 2013

Colm O Dlnlaing
March 31, 2014

Contents
Hello world [1I
Variables[2
Assignment statements and arithmeti@
Compound statements and for-loopgll
If-statementsH
While-loops[@
Arrays, input, initialisation [7
Character strings(8
Addresses of array element$§)
Functions and routinesIQ
Simulating routines and functions[1]
2-dimensional arraysi1Z
Call by reference; also, overloadindl3
Variables all over the placel4
Random numbers15
Command-line argumentd16
Structures[17
Classe$l8
Casts and mixed arithmetic expressiond9
Class Vec30
Files21
Templates, constants, etceterid2
Object-oriented programming 23
lterators
STL: useful featuresZ29
Recursion28
|IEEE standard
Accuracy of summation[28
Numerical accuracyi29
Linear algebra package3d
Various topics[31
Syllabus for May 2014 exani32

1 Helloworld

As always, we begin with ‘Hello world.’

C++ programs get data from keyboard/disc/etcetera, anck wata to terminal/disc/etcetera.
Writing data is calledutput.

In C++ the preferred style for output is througbut. For example

/*
* This C++ program prints a greeting

*/

#include <iostream>
// Always needed.

using namespace std;
// Almost always needed.

int main()

{

cout << "hello" << endl << "It’s a nice day" << endl;

return O;
// A convention.

Weird? The idea (see Conor Houghton’s notes) istbat is like a pipe connecting the program
to the terminal, and the< operator shifts data along the pipe. First hello, then a imewthen a
greeting, and another newline.

Such a program should be stored in a file caliedl | 0. cpp or something similar. Next it must
be compiled: a special program to convert it into ‘machine code’ which ¢benputer can execute.
The compiler on Unix machines is called

g++

The default name for the machine code (for historical res)sisa.out.
You can run it by just typing. out .

hgt+ hello.cpp

ha.out (the next two lines are printed by the program)
hello

It’s a nice day

Advanced topiclf you want to give the machine code a more meaningful nana asny pr og,

g++ —o myprog hello.cpp

More advancedWhat's the# include<iostream> needed for?

Because the input/output system isn’t actually part of the [@nguage, but a system that is stored
in a ‘library’ and brought in as neededbstream refers to a file which contains all the information
g++ needs to make sense of statements such as

cout << "hello" << endl;

You can inspect the file if you want — it’s extraordinarily cpheated. (On Unix machines,
[usr/include/c++/ ...)

Very advancedWhat's theusing namespace stdfor?

Names are used all over the place, and the namespace is —ugeny ilarge projects — like a
surname. Most of the time everything has the surnatde When you haveisi ng nanespace
st d; the ‘full name’ ofcout would bestd::cout. You might have reasons to useut as another
name, and you could set things up so your amut is mur phy: : cout .

The upshot is: if you leave out thesi ng nanespace std; you cannot useout, endl
on their own, but must usst d: : cout, std::endl.

Finally, that return O; statement.The value is returned somehow to the ‘operating system.’ |
don’t know how to get that valuer et urn 0; conventionally means ‘this program ran with no
problems’ and nonzero means ‘there were errors runningtbigram.’

2 Variables

Like most programming languages, C++ programs obtain data keyboard/disc/etcetera, store it
in variables, operate on the variables, and write data to terminal/disc.
Really, a variable is a name for a piece of data. There areelift&inds of data

e The minimal data is dit, which can be 0 or 1. A group of 8 bits formsbgte, which is
effectively the smallest piece of data — hence kilobyte, algte, gigabyte, terabyte.

Character data — letters, digits, punctuation, etceteesstared under the ASCII encoding.

An integeris stored in 4 bytes under a scheme which allows a range ot ativhillion.

A booleanis an integer restricted to O or 1. Equivalent to a bit, it ish@bly stored as a byte.

A double-precisioriloating-point number is stored in 8 bytes under various eatiens which
allow a range of roughly-21°% but with 52 bits of precision.

Very roughly, this allows numbers to be represented in thefo
+10° x a.bc. ..

where—300 < e < 300 (very roughly) with about 15 or 16 decimal places of accuracy

3

e There are also short and long integers, single-precisi@tifig-point, and various ‘unsigned’
alternatives, which we won't look at.

/*

* Basic declarations involve ‘types’

* bool, char, short, int, long, float, double,
* and various ‘unsigned’ combinations.
*/
// Example declarations
bool a;

int bc_2, Def, def;
// These are variables. Names are case-sensitive.
// statements are terminated by semicolon.
// Also, constants; a name for pi...
const double pi = 3.14159;
// Also, ‘enumeration types.’
enum Colour = { Red, Green, Blue I};

// This gives a handy way of naming colours.
// Actually, the compiler converts them to integers.

3 Assignment statements and arithmetic

The most basic operation (beyond printing greetinggrigimetic assignnment Here are some
declarations and assignment statements.

int a, b=0, c; // a,c have unpredictable values, b is intialised to O

double d, e, f;

c = c+l; // adds 1 to c, a new unpredictable value;

b = b+2; // now b is 2

c = 3/4; // c becomes ZERO: integer division rounds toward zero
d = 3/4; // d becomes 0.00

e = 3.0/4; // e becomes 0.75

Arithmetic statements use the operaters , *, / , %— the last is the remainder after division,
or ‘mod.’

Short-cutsincluda += b; whichadd$toa, andc++, c--, ++c, --c whichincrement
and decremert (the difference betweern++ and++c is a fine one.)

Remainder % Integer division rounds towards zero.

100 / 13 evaluates to 7 and 100 % 13 evaluates to 9.

-100 / 13 evaluates to -7 and -100 % 13 evaluates to -9.

This is different from the mathematical convention whererdmainder is always non-negative. Un-
der the mathematical conventions]00 + 13 = —8 and—100 (mod 13) = 4.

4 Compound statements and for-loops

Statements can be grouped together within brda¢et form compound statements.

for (A By O
{ D}

fal se

perform A;

Figure 1: for loop

For-loops are the preferred method of repeating statenrei@s+. The above figure allows all
the possibilities, but one shouldn’t be too fancy. The statetA in the picture would be something
like ‘i=0," initialising a variable i; the stateme®@would be something like ‘« 10’; and the statement
C should adjust the value ofin each iteration of the loop.

#include <iostream>
using namespace std;

int main ()

{
int i;
for (i=0; i<10; ++i)
{
cout << "7 x " <K< i1 << " =" <K 7 x i << endl;
}

NN NN NN NN
MoX X KK M oM XX
© O ~NO O WN
[
&

Arithmetic relations are

< less than
<= less than or equal
== equal

emphatically NOT =
which means ASSIGNMENT

> greater than
>= greater than or equal
= not equal

Relations can be combined using

&& logical and
emphatically NOT & which
means something else

Il logical or
emphatically NOT | which
means something else

! logical negation

5 If-statements

if (A
{ B}

N A? false

true

if (A
{ B}

el se

{ G}

Figure 2: if and if-else statements

#include <iostream>
using namespace std;

int main ()

{

int i;
for (i=0; i<10; ++i)
{
if (1% 2==1)
{
cout << "7 x " << i << " =" < 7 x i << endl;
}
}

return O;

output

~N NN NN
I A)
© N oW
I I TR TR
SEaR™

6 While-loops

while (A)
{ B }

A? fal se

true

perform B
Figure 3: while loop

While-loops are obviously similar to for-loops. Their firsaportant use is in controlling input.
The following program reads numbers from the terminal (orevamrrectly, the keyboard) and echoes
them. The expressidncin.eof() means: ‘while the input streanin has not reached end-of-file.’

When entering data from the terminal, end-of-data is sigdadly

ctrl-D

at the beginning of a line (I don’t think it works elsewherBpt just a newline.

#include <iostream>

using namespace std;

main()

{
int n;

while (! cin.eof())
{
cin >> n;
cout << "The number you typed in was " << n << endl;

}

return O;

However, it doesn’t work properly. Here is a sample run

% a.out

0

That was O
1

That was 1
D

That was 1
yA

What's happening is that the end-of-file condition becomgsdnly after an ‘unsuccessful’ read.
The following program does it properly.

#include <iostream>
using namespace std;

int main()

{

int n;
bool finished;

finished = false;
while (! finished)
{
cin >> n;
if (cin.eof ())
finished = true;
else

cout << "That was " << n << endl;

return O;

}

Sample run

%a.out

27182

That was 27182
314159

That was 314159
D

b

7 Arrays, input, initialisation

Array subscripting in C++ uses square brackets. To declararay of 100 elements, double-
precision,

double a[100]

Array indexing begins at 0. C++ (and C) is unusual here. Thedsgimdex is 99.

Each array entry occupies 8 bytes, so the total size of tlag 81800 bytes.

The array entries are stored in consecutive addresses

ag, g + 8, a9 + 16, ..., a9 + 99 *x 8.

Array indexing iscompletely uncheckedA reference taa[- 1] would not be rejected, just
converted to an addregs— 8. It may cause the program to crash at runtime. Again, a nefere
toa[100] converts to an addresg + 800, which is outside the range of the array.

In the example program below, note the test for end-of-data:
cin.eof()

#include <iostream>
// program reads numbers into an array and prints their sum.

using namespace std;
main()

10

double a[100], next;
int i, count;
double total;

count = 0;
while (count < 100 && ! cin.eof())
{

cin >> next;
// corrected C++ code

if (! cin.eof ())
{

alcount] = next;

++ count;
}

}

// At this point count gives the number of

// items stored in the array. Note the precaution
// that count cannot be > 100. Excessive input

// entries are ignored.

total = O;
for (i=0; i < count; ++i)
{
total += al[il;
}

cout << count << " items, total " << total << endl;

return O;
b
Compile and run (with a largeish file temp. Notice how it’s used)
hgt+ array.cpp
ha.out < temp
100 items, total 9957.69
h

Various features of arrays can be extracted using for-loéps example, instead of calculating
the sum of the elements, one can calculate their maximuns. réquires an if-statement.

// This is an incomplete piece of code. It is assumed that the
// array a has been read in as above. A double-precision variable

11

// maximum is assumed.

if (count == 0)

cout << "Nothing read in, maximum undefined" << endl;
else
{

maximum = a[0];

for (i = 1; i<count; ++i)

{
if (a[i] > maximum)
{
maximum = al[i];
+
}

cout << count << " items read, maximum " << maximum << endl;

...... compile and run as modified
% gt++ maximum.cpp

% a.out < temp

100 items read, maximum 101

T

An obvious application of arrays is to store data for statidtanalysis. Linear algebra is another
obvious application. A third and less obvious use istétnles.For example,

const int offset[12] = {0,3,3,6,1,4,6,2,5,0,3,5};

Notice that an array can leitialised. This is very useful. That particular array is useful in dadgc
the day-of-week from a given date (it is a running sum, modylof the lengths of months in an
ordinary year.) There is an example progragekday. cpp which converts any date in this century
to day-of-week.

8 Character strings

e A character in C is denoted 'A, 'b’, '9’, etcetera.

e There are some special characters;

’\n’ newline character (can be used in place of endl but not vice-versa)
’\t’ tab character
’\0’ null character. This is not the full list.

e A character string is aarray of characters.

12

e Since the size of an array is ignored, there must be anothetovaark the end of a character
string.

e Thenull charactermarks the end of a character string. Hence a string of lengghstored in
n + 1 bytes.

e Initialisation is possible in two styles

char hello[100] = "hello";
char goodbye[100] = {’g’,’0’,%0’,’d’,’b?,’y’,’e’,’\0’};

e For technical reasons,

char * my_string;

is another way of declaring character strings. Howeveikardn array, no storage is reserved
except by annitialiser .

e For example,

const char * dayname[] = {"Sunday","Monday",... etcetera ... , "Saturday"};

Note in this example that the size of the array is not specifiéd compiler deduces it —i.e.,
size 7 — from the initialiser.

9 Addresses of array elements

Because C++ arrays have first index 0, the formula for arrayxindas as follows.

Address of ali] =
address of al[0] +
i * (element size in bytes)

In an array of size n, the total memory used by the array
is n * (element size in bytes)

Given an array declaration

<type> <array name> [<array size>] (= optional initialiser) ;
E.g.,
double a [14 J;

The array size, i.e., the number of elements, is not negegisam initialiser is given. The type can
bechar, int, |ong, double, bool etcetera.

13

e There is a ‘pseudo-functiorsi zeof () which gives the size associated with certain types.
For examplesi zeof (char) is1,si zeof (int) is4,sizeof (long) (longinteger)
is 4 or 8 depending on the machirse,zeof (doubl e) is 8, sizeof (bool) appears to be
1.

e If the size of array items is and the size of the array itselfis then the total storage occupied
by the array issn. For the given example, the total array size is 112 bytes.

e For example, if the example arraybegins at addresk234, thena[10] is stored at address
1234 4+ 10 % 8 = 1314.

10 Functions and routines

For the past two weeks we have looked at C programs whereealtdle is in the part headed
mai n() .

Large-scale C++ programs can run to tens of thousands of jpessibly hundreds. They can'’t
all be stuffed between two braces followingi n() .

In fact, a program is usually separated into many ‘basicpamitive’ procedures: deciding what
is ‘primitive’ is the main part of the design process.

As usual we look at some silly examples.

Reconsider a program of the ‘hello world’ kind as one whichisria message: the primitive
operation is to write a message. Accordingly the prograrudes aroutinenessage(bool x
).

C++ allowsroutineswhich do things andunctionswhich calculate things.

void message (bool x)
void means ROUTINE. This does something.

double average (int n, double x[])
Here, double means double-precision-floating-point-valued FUNCTION.
This computes something.

Functions ‘return’ the value they compute using
return statements.

#include <iostream>
using namespace std;

void message (bool x)

{
if (x)
cout << "Hello" << endl;
else
cout << "Goodbye" << endl;

14

main ()

{
message (true);
message (false);

return O;
}
%a.out
Hello
Goodbye
pA

Theaver age example is much more interesting.

#include <iostream>
using namespace std;

double average (int n, double x[])
{

int i;

double total;

total = O;
for (i=0; i < n; ++i)
{
total += x[i];
+
return total / n;
}
main()
{

double a[100], next;
double av;
int i, count;

count = 0;

while (count < 100 && ! cin.eof())
{

15

cin >> next;
if (! cin.eof ())
{
alcount] = next;
++ count;
}
}

av = average (count, a);
cout << "Average of " << count << " numbers is " << av << endl;

return O;

running:
ha.out < data/big
Average of 100 numbers is 1e+06

This looks pretty grotty. It's time to fine-tune oaout << ... statements. Unfortunately, |
have the most primitive idea of how to do this.
The following changes produce a better output.

Add
#include <iomanip>
// i/o manipulation !

and change the output statement to

cout << setprecision(20) <<
"Average of " << count << " numbers is " << av << endl;

This produces the output
Average of 100 numbers is 1000000.546875

11 Simulating routines and functions

Here to ‘simulate’ a routine means (given its arguments)fitevdown the sequence of values taken
by its variables, and thereby compute what it computes. kamele

int xxx (int n)
{

int i, x;

16

x = 0;
for (i=0; i<n; ++i)

{
x += 1i;
}
return X;
}
xxx (4)
n i X
4
0
0
0
1
1
2
3
3
6

returns 6

It is important to tabulate the values in the order they aeatad, i.e., not to have them side-by-side

n
4

W N+~ O+
D WKk O M

returns 6

It is too confusing Exercise: what does this compute, given> 07?
Another example (every routine is nhanvexix)

int xxx (int m, int n)
{

int i, x;

x = 0;

for (i=0; i<m; ++i)

{

X += n;
+

return X;

17

Exercise: simulatexxx (3, 4). Whatdoexxx (m n) compute in general, givem >
07?
And another

int xxx (int m, int n)
{
int x;
x = 0;
while (m > 0)
{
if (m% 2==1)
X += n;
m=m/2;
n *x 2;

=]
I

return x;

This is calledRussian peasant multiplication.

Notice that the arguments andn are ‘used’ as local variables. This is safe because they are
copies of expressions in the calling program. If they wetklmareference then it would be a mistake
to use them this way.

The idea behind Russian peasant multiplication can be usgfuhctice. For example, a modified
form of this routine can be used to calculaté — still not useful — and to calculatd™ if A is a
square matrix. This is useful as the number of multiplicadics proportional tdog, m rather than
m.

int xxx (int m, int n)
{

int x,y,2;

while (y > 0)

z=3x%hY;

X =Y;
Z;

<
I

return x;

This is Euclid’s gcd algorithm, an old favourite.

18

12 2-dimensional arrays

Two-dimensional arrays are a logical extension of ordiraargys. For example,

int b[3][4];

has 12 entries and size 48 (in bytes). In general, if theddizeray entry type iss;, m ‘rows’ and
n ‘columns,’ the array occupiesnn bytes.

C++ convention dictates thatis equated to an array of arrays, that is, an array of 3 arrbgs o
ints. To calculate positions in the array, we need the faat ¢éach ‘row’ of the array is 4 ints, so it
has size 16. Ib starts at address thenb[i][]] has address+ 16i + 4;.

Strangely,each ‘row’b[i] has avalue,and that value is the address where the row begins. This
is consistent with the-th row being a 1-dimensional array.

In general, given ‘sizeof’ array entries ¢$ starting address is, and there are ‘columns, the
address of th@i][]] entryis

e+ins—+js

For example, suppose

long int c[5][9];

andc begins at address 4000.
Sizeof long int: 4 or 8 bytes depending on machine.
Sizeof row: 36 or 72 bytes.

Suppose long ints occupy 8 bytes.
Value of c[3] is4000 + 3 x 72 = 4216.
Addressof c[2] [5] is4000 42 x 72+ 5 x 8 = 4184.

13 Call by reference; also, overloading

In this section we touch on a subtle and very important qaestbout function/routine arguments:
‘Call by value’ versus ‘call by reference.” The upshot is that

e By default, arguments are call-by-value.
e Array arguments are effectively call-by-reference.

e C++ (unlike C) allows call-by-reference.

Suppose our program needs to read in a matrix using a routcteas

void read_matrix (int m, int n, double a[10][10])

e An array of fixed size is passed in which to store the matrix.

19

e The argumentsn andn are supplied as the ‘correct’ dimensions. obviously thay loa no
more thanl0 in either dimension. There is no simple way to pass 2-dineradiarrays of
variable dimension.

e Routine arguments are usually ‘call by value.” All arguments n, a are call by value. This
means that the routineead _mat ri x() works with copiesof whatever the calling program
passed. If ead_mat ri x() changed them, itis only copies which would be changed, aad th
changes would be forgotten when the routine returned.

e Shouldn’t the same hold for the mata® No. An array variable in C++ is stored asaddress,
that is, the address of the first array element. This is veop@aical: no matter how big an
array is passed to a subroutine, all that is actually passtti4 or 8 bytes giving its starting
address.

Soanassignmenteg i] [j] withinread_matri x() becomes an assignment tow i ,
col um j in an array whose starting address is ...” This is an arralgercalling program.

Unlike C, C++ has an explicttall-by-referencestyle for passing arguments:

void read_matrix (int & m, int & n, double a[10][10])

Now a copy ofm is not passed: a copy of tleldresof m is passed. Any operations enwithin
read_mat ri x() affectthecalling variable.

In particularr ead_mat ri x() canreadn andn and communicate them to the calling program.

Function overloading. C++, unlike C, allows the same function name to be used severast
so long as the argument lists are distinguishable. For eleampt that this does anything, but you
see the idea)

#include <iostream>
using namespace std;

double sum (int n, double x[])
{
}

int sum (int n, int x[])
{
}

int main()
{
return O;

by

20

14

Variables all over the place

Variables declared within routines/functions, includaadl-by-value arguments, aseitomatic
only existing within the run of the routine. They are storedlzeruntime stackn astack frame
for the routine.

Variables can be declared at the top of tlogp file. These arglobal, and are visible from all
routines.

In C++, variables can be declared almost anywhere.

Variables can also be declared withitocks a block is a group of statemenfs. .. } be-
tween braces. They are local to the block.

Variables can be declared at theadof for-loops, such as

for (int i = 0; i<100; ++i)

{

3

Example.

#include <iostream>

using namespace std;

int n = 0;

void a ()

{

cout << "a " << n << endl;

3

void b (int n)

{

cout << "b " << n << endl;

3

void ¢ (int k)

int main ()

{

21

int i, n, j;
n = 25;

aQ);
b(33);
c(55);
a();

for (i=0; i<n; ++i)

{1}

cout << "i " << i << endl;

for (j = 4; j < 10; ++j)
{

int i = j*j;

CO'llt << Hi n << i << n.n ;
}

cout << endl;

cout << "i " << i << endl;
cout << "j " << j << endl;

j = 100;
cout << "j " << j << endl;

for (int j = 4; j < 10; ++j)
{

int 1 = j*j;

COU.t <L Hi n <L l <L n.n ;

}
cout << endl;

cout << "i " << i << endl;
cout << "j " << j << endl;

%a.out

a0

b 33

a b5b

i 25

i16 i 26 i 36 1i 49 i 64 i 81

22

25
10
100
16 1 261 36 1 49 i 64 i 81
25
100

(ST W W S SR

15 Random numbers

A random number generatas a system for producing a long sequencesdéudo-randomumbers.
These are not random, because first the sequence is alwagarttee and second the sequence is
generated by some fairly simple rule. In C++

#include <cstdlib>

rand() produces a pseudo-random number between O
and RAND_MAX, a predefined constant

and

srand() ‘sets a seed.’

One can create uniformly-distributed double-precisiomhars by taking an integer random num-
ber and dividing it byRAND_VAX + 1.
This needs to be done carefully,
elseRAND_MAX + 1 will be negative!
The sequence imtendedto be the same each time. To get a different sequence eachadimae
can use a ‘random seed.’ Lookra&nd _doubl e. cpp:

#include <iostream>
#include <cstdlib>
#include <sys/time.h>

using namespace std;
static bool seeded = false;

/*

cstdlib is needed for rand()

sys/time.h (the .h means a C file) is used for
setting a random ‘seed’ by the microseconds part

of the system clock.

Probability against repetition roughly a million to 1.

* %X X ¥ *

static void seed ()

23

struct timeval tv;
gettimeofday (& tv, NULL);
srand (tv.tv_usec);

}

Explanation. getti nmeof day() is a C library function. Structures will be discussed very
soon. The& ingetti neof day(& tv, NULL means that aaddresss passed — C does not
have call-by-reference.

Here is the i neval structure (fromman getti neof day in Unix)

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

So whatseed() does is to ‘read the clock’ and use the microseconds as a sedtefrandom
number generator.
By the way, thastatic means ‘private.’

double rand_double()

{
double divisor;
divisor = RAND_MAX;
divisor += 1;
// This is to ensure double-precision calculations.
// RAND_MAX+1 is negative in integer arithmetic.
if (! seeded)
{
seed ();
seeded = true;
}
return rand() / divisor;
b

15.1 Coins and dice.

As an exercise, we can use random number generators to nthiathrowing of two dice. Here is
di ce. cpp

24

#include <cstdlib>
#include <sys/time.h>

using namespace std;
static bool seeded = false;

static void seed ()

{
struct timeval tv;
gettimeofday (& tv, NULL);
srand (tv.tv_usec);

3

int rand_6()
{
if (! seeded)
{
seed ();
seeded = true;

}

return (rand() % 6) + 1;
}

main(int argc, char * argvl[])
{
int n = atoi (argv([1l]);
int i,j,k;
double count[13];
double table[13] =
{o0,o0, 1.0/36, 2.0/36, 3.0/36, 4.0/36, 5.0/36,
6.0/36, 5.0/36, 4.0/36, 3.0/36, 2.0/36,
1.0/36};

for (i=0; i<13; ++i)
count[i] = O;

for (i=0; i<n; ++i)
{

rand_6Q);
rand_6Q);

Q.
[

25

count[j+k] += 1;
}

cout << "out of " << n << " throws\n";
for (i=2; i<=12; ++i)
{
cout << i << " came up a proportion of " << count[i]/n <<
" times (probability " << table[i] << ")\n";

This worked well on one machine

On a PC running Linux, the result of ‘dice’ was:
out of 10000 throws

2 came up a proportion of 0.0273 times (probability 0.0277778)
3 came up a proportion of 0.0558 times (probability 0.0555556)
4 came up a proportion of 0.0876 times (probability 0.0833333)
5 came up a proportion of 0.1108 times (probability 0.111111)
6 came up a proportion of 0.1426 times (probability 0.138889)
7 came up a proportion of 0.1681 times (probability 0.166667)
8 came up a proportion of 0.1335 times (probability 0.138889)
9 came up a proportion of 0.1081 times (probability 0.111111)

10 came up a proportion of 0.0864 times (probability 0.0833333)
11 came up a proportion of 0.0525 times (probability 0.0555556)
12 came up a proportion of 0.0273 times (probability 0.0277778)

But look at what happened on the maths machines:

On boole (and turing) the result was
out of 10000 throws

2 came up a proportion of O times (probability 0.0277778)

3 came up a proportion of 0.1081 times (probability 0.0555556)
4 came up a proportion of O times (probability 0.0833333)

5 came up a proportion of 0.219 times (probability 0.111111)

6 came up a proportion of O times (probability 0.138889)

7 came up a proportion of 0.3341 times (probability 0.166667)
8 came up a proportion of O times (probability 0.138889)

9 came up a proportion of 0.225 times (probability 0.111111)

10 came up a proportion of O times (probability 0.0833333)
11 came up a proportion of 0.1138 times (probability 0.0555556)
12 came up a proportion of 0O times (probability 0.0277778)

What's the difference? As a clue, we do a coin-tossing sinargevens. cpp)

26

#include <iostream>
#include <cstdlib>

using namespace std;

int main()
{

int i;

for (i=0; i<10; ++i)
{

if (1>0)

{ cout << n u; }

cout << rand() % 2;
+

cout << endl;

return O;

Again, compare answers from a PC and from boole:

pc:
1011110011
boole:

0101010101

So thebool e output is not at all random. This means thdtreear congruentialgenerator is
being used to produce, s, 73, . . .:

Tny1 = ar, + 0 (mod R)

wherea andb are constants anll is RAND_MAX + 1. The point is that? is a power of 2, and if,,
is7, (mod 2) then
Tpy1 = d'w, + b (mod 2)

whered’, b’ are the residues afandb, modulo2. Since

0
1
xz
r+1

dz+b (mod 2) =

there is no room for randomness. This caused the problemratiace. cpp. In consequence:

27

Careful about using remainders.Linear congruential generators aretrandom in the low bits.
Evidently other kinds of generator are used on Linux PCs.

How can one compensate for this problemBasically, to produce random numbers in the range
0...n — 1, get a randomeal-valuednumbers in the intervall0, 1), and returrsn.

#include <iostream>
#include <cstdlib>
// coin.cpp

// Produces 10 random bits. Not degraded
// by linear congruential generators.

using namespace std;

int randbit()

{
const double scale = 1.0 / (1.0 + RAND_MAX);
// This is a reliable way to scale
// It forces RAND_MAX to be converted
// to double before adding 1.0
// Note: RAND_MAX + 1 (integer arithmetic)
// is -2731
double drand;
drand = rand();
// random number, converted to integer
drand *= scale;
// scaled to the interval [0,1)
return (drand >= 0.5);
// uniform [0,1) has probability 1/2 of
// being >= 1/2
}

int main()
{

int i;

for (i=0; i<10; ++i)
{

if (i>0)

{ cout << " "; 3}

cout << randbit();

}

cout << endl;

28

return O;

16 Command-line arguments

When you run a prograna. out , say, anything betweesm out and end-of-line is @ommand-line
argument
For example,

a.out infile outfile
a.out 10000

e The command-line arguments are character strings
e They do not contain blanks (unless quotes are used)
e They are available to the program

e They are character strings, but can be converted to integknule using the built-in functions
atoi (), atof()

They are available to the program as follows.

e Instead of nt mai n(),writeint main (int argc, char * argv[])

e ar gc gives the number of command-line argumernitgluding the program namsuch as
a.out.

e ar gv[0], a character string, is the name of the program

e Forl <i < argc,argv|i] isthei-th command-line argument.

a.out in_file out_file
argv[0]: a.out
argv[1]: in_file
argv[2]: out_file

a.out 10000
argv[0]: a.out
argv[1]: 10000
This is a character string.
To use it, write something like

n = atoi (argv[1]);

29

or maybe
x = atof (argv[1]);

To use atof() or atoi(), you need
#include <cstdlib>

17 Structures

In programming it is important to collect data in usable sinithis can be done in C++ (rarely: C++
has much better ways of doing it) usisguctures. For example, without structures we might write
functions of 3-vectors like

double norm (double x, double y, double z)...

(if one chooses not to use arrays). Now a structure with 3 corapts can be established as a new
type

typedef struct { double x,y,z; } VEC3;

main()
{
VEC3 a;
a.x =1; a.y = 2; a.z = 3;
// this is how to get the components
// of VEC3
cout << a.x << " " <K< a.y <" " <K< a.z << endl;

by

17.1 Complicated details: please skip

Unfortunately, we must go further with this.

VEC3 *a;

declares a variabla to be theaddressof a VEC3. It haspointer type. (Compare withchar =

argv[]).
This will not be covered in lectures, but the notes are rethisee below).

30

17.2 For example, matrices.

Structures are used to ‘package’ data. We have seen som@lesanvolving matrices. But routines
for matrices generally need three items:

e The height, call itn
e The width, call itn

e A 2-dimensional array such dbubl e a[10] [10]

It would make good sense to define a structure such as

typedef struct
{
int height, width;
double entry[10][10];
} MATRIX;

Now, at least, the height and width and matrix proper are kefiie same place, and you could
refer to them as follows

MATRIX mat;

. mat.height ...
. mat.width ...
. mat.entry[i] [j]

This is restrictive, since height and width cannot exceedaibd if less than 10 there is wasted
space. Structures are really a C feature, not important in, @#él in C one can overcome these
restrictions using tricks with pointers.

17.3 Continuing complicated details: please skip

They are accessed as shown below. (The combined charactas supposed to resemble an arrow
which ‘points’ to where an item is stored.

a->x = 1; a->y = 2; a—>z = 3;

In connection with pointer types, C++ provides a wagteatea memory region which can hold
aVEC3: new.

VEC3 * a = new VEC3;

31

In practice, variables of structure type are rare; poiryee$ are more common.

#include <iostream>
#include <cmath> // for sqrt

using namespace std;
typedef struct {double x,y,z;} VEC3;

void print_vec (VEC3 * a)
{

// Prints without newlines
cout << a->x << " " << a->y << " " << a->z;

by

VEC3 * make_vec (double x, double y, double z)
// ‘makes’ a vector with the given components.

{
VEC3 * vec = new VEC3;
// space has been reserved
vec->xX = X; vec->y = y; vec->z = z;
// values are copied
return vec;
}
void delete_vec (VEC3 * vec)
{
// to avoid ‘memory leaks.’ A technicality.
delete vec;
}

Cross product, dot product, determinant:

VEC3 * cross_prod (VEC3 * a, VEC3 * b)

{
return
make_vec (
a->y * b->z - a->z * b->y,
a->z * b->x - a->x * b->z,
a->x * b->y - a->y * b->x);
}

double dot_prod (VEC3 * a, VEC3 * b)
{

32

return a->x * b->x + a->y * b->y + a->z *x b->z ;

}

double det (VEC3 * a, VEC3 * b, VEC3 * c)
{

double d;

VEC3 * bc = cross_prod (b, c);

d = dot_prod (a, bc);

delete_vec (bc);

return d;

int main()

{
VEC3 * a, * b, * c, * d;
double len;
a = make_vec (1, 2, 3);
b = make_vec (4, 5, 6);
c = make_vec (7, 8, 8);
d = cross_prod (a, b);
cout << "a "; print_vec (a); cout << endl;
len = sqrt (dot_prod (a, a);
cout << "length " << len << endl;
cout << "b "; print_vec (b); cout << endl;
cout << "¢ "; print_vec (c); cout << endl;
cout << "a x b "; print_vec (d); cout << endl;
cout << "(a x b) dot ¢ " << dot_prod (d, ¢) << endl;
cout << "det(a,b,c) " << det (a,b,c) << endl;
return O;

}

18 Classes

Object-oriented programming is where the data is organigedyroups ofobjects C++ is intended
for this style of programming. It adds greatly to the poweaddnguage.

What separates C++ from C is the notionatdiss an idea which probably appeared first in the
language SIMULAG7. An object is anstanceof a class.

33

C++ regards the Gt ruct, uni on, [c++ classes as closely related, but ‘structs’ and ‘unions’
only contain data. Classes contain data and also functiorchwiperate with and on that data.

Cis a ‘'small’ language and in the space of a term it is poss$thlearn almost all of it. C++ may
also be small, but classes are very sophisticated and taitebdetting used to. As usual, we take a
silly example to start.

#include <iostream>
using namespace std;

typedef class Boa
{
public:
void speak ();
void toggle (O);
void showbit();
private:
int bit;
} Boa;

Definition. An incomplete function or routine declaration suctsagak() ; which is followed
by a semicolon, nof...code.. }, is called aunction or routine prototype . It describes the argu-
ment and return types, which are often needed before thelaxlbeen supplied.

What do public and private mean? Try

int main()

{
Boa a;
cout << a.bit << endl;
return O;

by

Note. Members of classes are identified using the dot notatiorgsistithst r uct s. A member
can be a variable, as witit r uct (a ‘field’ in C), or a function or routine.
This won'’t compile.

hgtt+ boa_0.cpp

boa_0.cpp: In function ’int main()’:
boa_0.cpp:12: error: ’int Boa::bit’ is private
boa_0.cpp:20: error: within this context

1 Uni ons were used in C to save space. They are probably obsolete. 4@y are unnecessary because of ‘class
inheritance.’ (I think.)

34

So, makebi t public.

typedef class Boa

{
public:
void speak ();
void toggle ();
void showbit();
int bit;
} Boa;

This time it did compile, and the output was

-1218875404

So obviously class objects aren't initialised. How about

typedef class Boa
{
public:
void speak ();
void toggle O);
void showbit();

int bit = 0;
} Boa;

This doesn’t compile

boa_1.cpp:12: error: ISO C++ forbids initialization of member ’bit’
boa_1.cpp:12: error: making ’bit’ static

boa_1.cpp:12: error: ISO C++ forbids in-class initialization of
non-const static member ’bit’

So this doesn’t work. We’ll come back to the initialisation problem later, and getwith the
other pieces. We have to include code $greak(), toggle(), showbit(). These can be
written almost like ordinary functions. The only differenis a prefixBoa::.

void Boa::speak ()
{

2| tried to get a rationale for this: googling revealed that-@®esn't allow such initialisation but Java and C# do. One
concludes that its implementation was considered a nuisbythe C++ designers, but would not have been impossible.

35

if (bit)

cout << "Hello\n";
else

cout << "Goodbye\n";

Strictly speakingbi t should bebool , but C++ and C both accept general integer values as truth
values. Any nonzero integer is interpreted as true: onlyfalse.

void Boa::toggle ()
// toggle changes O to 1 and 1 to O
{
bit = 1 - bit;
}

void Boa: :showbit ()

{
cout << bit << endl;

}

int main()
{

Boa a;

.speak() ;
.showbit();
.toggle();
.showbit () ;
.speak() ;

PP PP E

return O;

Why theshowbi t () ? Becauséi t is private, so it can’t be seen from outside, whatever that
means. The object itself has full access to the merhbérwhich it owns. This program compiles,
and works, except for the initialisation problem.

Hello
-1218101260
1218101261
Hello

Initialisation is handled througbonstructors We need to add one more routine. It is declared in
a slightly different way from normal routines, and it is nahBoa.
Here is a full program.

36

#include <iostream>
using namespace std;

typedef class Boa

{
public:
Boa(); // constructor
void speak ();
void toggle ();
void showbit();
private:
int bit;
} Boa;

void Boa::speak ()

{
if (bit)
cout << "Hello\n";
else
cout << "Goodbye\n";
}
void Boa::toggle ()
{
bit = 1 - bit;
}
void Boa: :showbit ()
{
cout << bit << endl;
}
Boa: :Boa()
{
bit = 1;
}
int main()
{
Boa a;
int i;

37

cout << "a.showbit () initially " ; a.showbit();
for (i=0; i<5; ++i)
{
a.speak();
a.toggle();
}
cout << "a.showbit () finally " ; a.showbit();

return O;

3

ha.out

a.showbit () initially 1
Hello

Goodbye

Hello

Goodbye

Hello

a.showbit () finally O

19 Casts and mixed arithmetic expressions

19.1 Casts

e When assigning a value to a variable, the types should maithsame exceptions in the case
of numerical values.

e One can assign The type of a variable is clear: it has to beud=t| For the type of an expres-
sion, it is not clear. However, the types of constants areiggly easy to recognise.

’\n’ character
"hello" character string
-45 int

1.23 double

true bool

e A double value can be assigned to an int, and vice-versa. @aaneof int to double is direct,
that is,3 becomes.0. Double to ints areounded towards zero,so1.23 becomed and—1.23
becomes-1.

e An expression can be converted to another type usasts The syntax is

38

(... type) expression
such as
(double) 1;

e Also, expressions can have subexpressions of differeestyfpor example,

1+2.34

is 3.34. More about this later.

We now have a clean solution to that difficl®AND_MAX problem: this constant is the maxi-
mum positive integer value, and if we add 1, we get the mininmegative integer value. Cast it to
doubl e, and add 1.

#include <iostream>
#include <cstdlib>

using namespace std;

int main()

{

const int bad = 1 + RAND_MAX;
// The compiler issues a warning, but goes ahead.

const double rm_p_1 = 1 + (double) RAND_MAX;

cout << "bad " << bad << endl;
cout << "rand_max + 1 " << rm_p_1 << endl;

return O;

%hgt+ temp.cpp

temp.cpp: In function int main():

temp.cpp:9: warning: integer overflow in expression
alcomby, a.out

bad -2147483648

rand_max + 1 2.14748e+09

T

19.2 Expressions of mixed arithmetic type

An expression can be a combination of other expressiong usin-, , /, %. Where two subexpres-
sions of different types are combined,

39

e Surprisingly,char s are promoted to ints.

This can be problematic if there is ‘sign extension.” A chathva face value- 127 has *high
order bit 1’ and on some machines (including the maths mashimis converted to a negative
integer.

e bools are converted to ints.
e ints are converted to doubles.
¢ Floats araalwaysconverted to doubles in any arithmetic calculation.
Going back to
const double rm_p_1 = 1 + (double) RAND_MAX;

the expression on the right mixes int with double; the 1 isvedied to double before adding.
One last example.

1 - 2.3 - 4 is evaluated from left to right
1-2.31is -1.3
-1.3 - 1is -5.3

1 + 2/3 becomes 1 + 0 then 1
1 + 2.0/3 = becomes 1 + 0.666667 then 1.666667

20 Class Vec3

This class is for the usual vector computation®ih It's a variation ofst r uct VEC3, turned into
aclass.

#include <iostream>
#include <cmath>

using namespace std;

typedef class Vec3
{
public:

Vec3();
Vec3(double, double, double);
double x();
double y(O);
double z();
void copy (Vec3);
Vec3 cross_prod (Vec3);

40

double dot_prod (Vec3);
double norm();
double det (Vec3, Vec3);
void print();
private:
double x1, x2, x3;
} Vec3;

e There aretwo constructors, distinguishable by their argument lists.isTit an example of
overloading.

e Vec3 (doubl e, doubl e, doubl e) is enough of a prototype. You don’t need to write
Vec3 (double x, double y, double z).

e This may be a bad idea, but) is supposed to be thecomponent, privatelx1. This is a
way of publishing the components.

e copy() is supposed to copy the components of another vector intouirent one.

e cross_prod () returns avec3. It's used in the following style:

c = a.cross_prod (b)

e Likewisedot _pr od() . Determinant is

a.det (b, c)

e Andnor n() takes no arguments, just returning the norm of the currestbve

n = a.norm();

e Finally,

#include <cmath>

is needed because a mathematical funcgignt () is used.

20.1 Code for the class member functions and routines

Vec3::Vec3() // argument-free constructor

{
x1 = x2 = x3 = 0;
}

41

Vec3::Vec3 (double xx, double yy, double zz)
// Constructs vector with given components

{

xl = xx; x2 = yy; x3 = 2z;

double Vec3::x()
// the x-component

return x1;

3

double Vec3::y()
// the y-component
{

return x2;

3

double Vec3::z()
// the z-component

return x3;

}

void Vec3::copy (Vec3 other)
// Copies other to here; a routine;
// overwrites current values:
// doesn’t return a new Vec3.

x1 = other.x(); x2 = other.y(); x3 = other.z();

// For comparison, code from the ‘C-style’ struct
// VEC3 is shown, ‘commented out.’

//VEC3 * cross_prod (VEC3 * a, VEC3 * b)
//{

// return

// make_vec (

// a->y * b->z - a->z * b->y,
// a->z * b->x - a->x * b->z,
// a->x * b->y - a->y * b->x);
//}

42

Vec3 Vec3::cross_prod (Vec3 other)
// returns a.cross_prod (b)
{

double xx, yy, zz;

xx = y() * other.z() - z() * other.yQ;
yy = z() * other.x() - x() * other.z();
zz = x() * other.y() - y() * other.x();

return Vec3(xx, yy, zz);

//double dot_prod (VEC3 * a, VEC3 * b)
/74
// return a->x * b->x + a->y * b->y + a->z * b->z ;

//}

double Vec3::dot_prod (Vec3 other)

{

return

x1 * other.x() + x2 * other.y() + x3 * other.z();

}
double Vec3::norm ()
{

return sqrt (x1*xl + x2*x2 + x3%x3);
}

//double det (VEC3 * a, VEC3 * b, VEC3 * c)
//{

// double d;

// VEC3 * bc = cross_prod (b, c);

// d = dot_prod (a, bc);

// delete_vec (bc);

// return d;

//%
double Vec3::det (Vec3 b, Vec3 c)
{
return
dot_prod (b.cross_prod (c));
}

//void print_vec (VEC3 * a)
/74

43

// // Prints without newlines

// cout << a->x << " " << a->y << " " K< a->z;
//}
void Vec3::print ()
{
cout << x1 <K " "M K x2 <" L XB;
// no newline
}
int main()
{
Vec3 a(1,2,3), b(4,5,6), c(7,8,8);
Vec3 d = a.cross_prod (b);
cout << "a "; a.print(); cout << endl;
cout << "b "; b.print(); cout << endl;
cout << "¢ "; c.print(); cout << endl;
cout << "a x b\n"; d.print(); cout << endl;
cout << "norm " << d.norm() << endl;
cout << "(a x b) dot c\n" << d.dot_prod (¢) << endl;
cout << "det(a,b,c)\n" << a.det(b,c)<< endl;
return O;
}
——————————————————— output
% a.out
al23
b456
c788
axb
-3 6 -3

norm 7.34847
(a x b) dot ¢
3

det(a,b,c)

3

pA

21 Files

Up to now, input has been taken from the keyboard (or indirgesing <, from a file, and output has
been to the screen or indirectly, usingto a file.

44

This is the tip of the iceberg. C++ offers very elaborate fidedlling facilities.
We shall mention only a few. For further information, conghk cplusplus.com reference web

page.
e ifstream is a type (actually a class) which allows input from a named fil
e ofstreamfor output.
¢ A file must beopened— connected to a named file.
e Output files must belosed otherwise their contents will be lost.

e Operations used witbin, cout can be used here. In particular<, >>, and member function
eof().

e An alternative way of reading data is using the member fongetline (buffer, count). This
transfers input into the array ‘buffer’ as a string. It reaggo the next newline, if any, but with
a limit on the number of characters read.

Buffer is a character array — 200 characters, say; and couas g maximum number of
characters allowed. Under the string conventions, a sensg with *
0’ — so at most 199 characters are read.

e You need to includef st r eant>.

Here is an example. It usesting class, of which we shall see more later.

Why? It was mentioned before that the> operator can be used to read data (fram) into
character arrays. This is dangerous, because there is mmicon the number of characters read.
The C++string class allows for strings of any length. Reading this way in@ta string is perfectly
safe.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
int main(int argc, char * argv[])
{

ifstream input;

char buffer[200];

bool finished;

string s;

input.open (argv[1i]);

finished = false;

45

cout << M-mmmmmmmmm oo oo INPUT line by line-----—-————————--- " << endl;

while (! finished)
{
input.getline (buffer, 200);
if (input.eof ())
finished = true;
else
cout << buffer << endl;

}
input.close();

input.open (argv[1i]);
finished = false;

cout << endl << "-\——————————-——- INPUT word by word-————————————— — ——— "
<< endl;

while (! finished)
{
input >> s;
if (input.eof ())
finished = true;
else
cout << s << endl;

return O;

Sample output:

Ladle Rat Rotten Hut

Wants pawn term, dare worsted ladle gull hoe 1lift wetter
murder inner ladle cordage, honor itch offer lodge, dock,

Rat
Rotten
Hut

46

Wants
pawn
term,
dare
worsted
ladle
gull
hoe
lift
wetter
murder
inner
ladle
cordage,
honor
itch
offer
lodge,
dock,

22 Templates, constants, etcetera

22.1 Templates

C++ allows generalised functions and classes. Class tengséitetions are as follows

template <class T> class <class name> { ... };

where<T> is a ‘type parameter. We shall not be concerned with wrigegeric classes or functions.
But we shall use them. Using a class template is simple:

#include <vector>

vector <int> x;

uses alass templat@ect or , and declarex to be avector of ins.
Less easy to understand is a function or routine templatee lH@ne we shall use.

template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

This is a template becau®andonmAccessl t er at or is an incomplete class — that is, not all its
functions are coded. Sorting works through a kind of magioréater.

47

22.2 Constants in classes

One can use constants within class definit®rzor example, suppose one created a cBiss ng
for character strings. This would be ridiculous, becausestlis already a clasgt r i ng which can
do almost anything with character strings.

#include <iostream>
using namespace std;

typedef class String
{
public:
String();
static const int max = 1000;
String (char * buf);
void print();
private:
char store[max];
} String;

String::String ()
{

store[0] = ’\0’;
}

int main()
{
String s;
cout << "s.max is " << s.max << endl;
cout << "String::max is " << String::max << endl;

return O;

It is necessary to add the keyword ‘statictax. Otherwise the compiler says that ISO C++ forbids
initialisation.
Notice something rather odd:
It is possible to us&t ri ng: : max independent of any variable of claSsri ng.
For example, in the ‘real’ string class, there is an enornoamunstannpos, apparently the same
asRAND_MAX, which is the maximum possible length of strings. It is userddefault values. It can
be referred to via

3Many features can be declared inside classes, suchpesdef .

48

#include <string>

. string::npos ...

23 Obiject-oriented programming

Object-oriented programming is where the data is orgarirgedbjects larger units than the basic
int, char, double, etcetera. The class mechanism in C++ is intended for objeetted
programming.

C++ comes with atandard template librarya collection of prefabricated classes. These include
string, vector, set, map,and others. Used properly, a great deal of programmingtetfm be
avoided. The web-page

http://www.cplusplus.com/reference

is extremely useful, our ‘bible.” It has a full descriptiohtbe various classes discussed below, and
plenty more besides.

¢ Reading a text file line-by-linegétline()) or word by word ¢&>).

e Reading words and storing them ivact or .

Note. Thevect or class is aclass template One can have vectors of ints, of doubles, of
strings, and so on: this must be specified, as for example in

#include <vector> // can’t use vector objects without this

vector<string> v;

¢ Reading words, reducing theti(ncl ude <cct ype>)byremoving non-alphanumeric char-
acters, and storing.

e Reading words, storing, and sorting the vector: then the svapghear in sorted order.

e Reading words, storing them ins&t and printing them using an iterator. They are printed in
sorted order, without repetitions.

set is a class template: one usest <stri ng>and soon.

49

23.1 Pairs

There is aclass templat@air which enables one to construct ordered pairs. For example,

pair <int, int> p;

defines a variablp. You can get its components through

p.-first
p.second

Example.

#include <iostream>
#include <vector>

using namespace std;

int main()

{
vector < pair <int,int> > v;
int 1i;
for (i=0; i<10; ++i)
v.push_back (pair <int, int> (i, i*i));
cout << "QUTPUT----------- \n";
for (i=0; i<10; ++i)
cout << v[i].first << ’ ’ << v[i].second << endl;
return O;
}
QUTPUT —--—=—======—=—=——m—
00

©

©O© 00 NO O WN -
N
ol

50

23.2 Replacing words

We shall write a program to replace occurrences of one wordnwogher. This shows the power of
thestring class.
We use the following member functions.

e string(buffer): constructor; constructs a string containing the charadatduf f er (up
to '\0’).

e find (word) returns the starting position of the earliest occurrencthefword within
the string.

¢ If the word does not occur in the strinfgi, nd returnsst r i ng: : npos, an effectively ‘infinite
value. (Probably?? — 1).

e replace (pos, |en, newwrd) removesl en characters beginning gtos in the
string, insertinghewwor d in its place.

#include <iostream>
#include <cstdlib>

using namespace std;
int main(int argc, char * argv[])
{

bool finished;

char buffer[200];

string oldword, newword, str;

oldword = string (argv[1]);
newword = string (argv([2]);

finished = false;
while (! finished)
{
cin.getline (buffer, 200);
if (cin.eof ())
finished = true;
else
{
str = string (buffer); // convert
int i = str.find (oldword);
while (i < string: :npos)
{

str.replace (i, oldword.length(), newword);

51

i = str.find (oldword);

cout << str << endl;
}
}

return O;

a.out groin-murder GREENMUTTER < ../data/ladle
Ladle Rat Rotten Hut

Wants pawn term, dare worsted ladle gull hoe 1lift wetter
murder inner ladle cordage, honor itch offer lodge, dock,
florist. Disk ladle gull orphan worry putty ladle rat cluck
wetter ladle rat hut, an fur disk raisin pimple colder
Ladle Rat Rotten Hut.

Wan moaning, Ladle Rat Rotten Hut’s murder colder inset.
"Ladle Rat Rotten Hut, heresy ladle basking winsome burden
barter an shirker cockles. Tick disk ladle basking tutor
cordage offer groinmurder hoe lifts honor udder site offer
florist. Shaker lake! Dun stopper laundry wrote! Dun
stopper peck floors! Dun daily-doily inner florist, an
yonder nor sorghum-stenches, dun stopper torque wet
strainers!"

"Hoe-cake, murder," resplendent Ladle Rat Rotten Hut, an
tickle ladle basking an stuttered oft.

Honor wrote tutor cordage offer GREENMUTTER, Ladle Rat
Rotten Hut mitten anomalous woof.

" Wail, wail, wail! " set disk wicket woof, "Evanescent
Ladle Rat Rotten Hut! Wares are putty ladle gull goring
wizard ladle basking?"

"Armor goring tumor GREENMUTTER’s," reprisal ladle gull.
"Grammar’s seeking bet. Armor ticking arson burden barter
an shirker cockles."

"0 hoe! Heifer gnats woke," setter wicket woof, butter
taught tomb shelf, "0il tickle shirt court tutor cordage
offer GREENMUTTER. 0il ketchup wetter letter, an den

52

0 bore!"

Soda wicket woof tucker shirt court, an whinney retched a
cordage offer GREENMUTTER, picked inner windrow, an sore
debtor pore oil worming worse lion inner bet. En inner
flesh, disk abdominal woof lipped honor bet, paunched honor
pore oil worming, an garbled erupt. Den disk ratchet
ammonol pot honor GREENMUTTER’s nut cup an gnat-gun, any
curdled ope inner bet.

Inner ladle wile, Ladle Rat Rotten Hut a raft attar
cordage, an ranker dough ball. "Comb ink, sweat hard,"
setter wicket woof, disgracing is verse. Ladle Rat Rotten
Hut entity betrum an stud buyer GREENMUTTER’s bet.

"0 Grammar!" crater ladle gull historically, "Water bag
icer gut! A nervous sausage bag ice!"

"Battered lucky chew whiff, sweat hard," setter
bloat-Thursday woof, wetter wicket small honors phase.

"0 Grammar, water bag noise! A nervous sore suture
anomolous prognosis!"

"Battered small your whiff, doling," whiskered dole woof,
ants mouse worse waddling.

"0 Grammar, water bag mouser gut! A nervous sore suture
bag mouse!"

Daze worry on-forger-nut ladle gull’s lest warts. 0il offer
sodden, caking offer carvers an sprinkling otter bet, disk
hoard hoarded woof lipped own pore Ladle Rat Rotten Hut an
garbled erupt.

Mural: Yonder nor sorghum stenches shut ladle gulls stopper
torque wet strainers.

24 lterators

Definition Paraphrasedrom the C++ reference:
An iterator is any object that,

e pointing to an object within a range (collection) of objects

53

¢ has the ability taterate through the elements of that collection
e using a set of operators (including at least (increment) and dereference) pperators).

Dereference:In C, if a is the address of a piece of data, thenis the piece of data. ‘Derefer-
encing a’ means getting the piece of data stored at a.

Iterators provide uniform ways of traversing objects inimas different orders. Classes such as
string, vector, set, nmap, includethem. They are also used to define the range for generi
sorting routines.

They generally involve highly complex expressions such as

|pair <map<string,int>::iterator, bool> ret;

This defines a variableet whose type is @air (see above) of items, the first being a

map<string,int>::iterator

Explanation.
map is a class template. Within any class one can have public andt@t ypedefs. For
example,

#include <iostream>
using namespace std;

typedef class A

{
public:
typedef int I;
A
int main()
{
A::I i = 234;
cout << i << endl;
return O;
}

Anyway, it is ok to use

map<string,int>::iterator

as the name for a type.
The general style for iterators is

54

[for (ITERATOR TYPE it = v.begin(); it != v.end(); ++it) |

For example

for (set<string>::iterator it = v.begin();
it !'= v.end(); ++it)

Also, an iterator returns pointerto an item each time. It was mentioned before, but only inipgss
if 7 is of type ‘pointer to x’ therx: is the item pointed to. This is important in the example below

Forward and reverse iterators are provided. Here agaimmal program to print out words taken
from the input. It removes non-alphanumeric charactensséreverseterators, so the results

#include <iostream>
#include <string>
#include <cctype>
#include <set>
#include <algorithm>

using namespace std;

int main()

{
bool finished;
string str;
string trunc;
set<string> v;

finished = false;
while (! finished)
{
cin >> str;
if (cin.eof ())
finished = true;
else
{
trunc = string();
for (int i=0; i<str.length(); ++i)
if (isalnum (str[i]))
trunc.push_back (str[i]);
if (trunc.length() > 0)
v.insert (trunc);
}
}

for (set<string>::reverse_iterator i = v.rbegin();
i !'= v.rend(); ++ i)

55

{

cout << *x i << endl;

}

return O;

¥

Running it on our ‘Ladle Rat’ sample text, we get

your
yonder
wrote
worsted
worse
worry
worming
woof
etcetera

Further points.

e An iterator is used to traverse collections.

e They are used also to pinpoint locations in sophisticatgeabd, ‘containers, such as sets or
maps; cff i nd() .

e They contain plenty of information. In fact, they contairoegh information to sort the object
completely. For example,

sort (v.begin(), v.end())

24.1 Sorting

To illustrate the last,

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{ int 1list[6] = {3,1,4,1,5,9};
vector < int > v;

for (int i = 0; i<6; ++i)

56

{ v.push_back (list[i]);

}

sort (v.begin(), v.end());

for (int i=0; i<v.size(); ++i)
{ cout << v[i] << 7 7;

}

cout << endl;

return O;

24.2 Maps

There is a class templateap<domain_type, codomaintype> which is very useful for storing
features or properties of things.

e Itis alittle awkward to use, since itis essentiallsedof pair <domain_type, codomaintype>,
and when inserting, one creates and inserts a pair.

e lterators are returned when consulting the map. Such aatdétecan be treated agpainterto
a pair.

Note. Recall that ifx is of typepair <. .. > then its two components ase first and
X. second.
If xis of typepoi nter to pair... thenitstwo components are

(xx) .first and (*x) .second

There is an alternative notation:

x->first and x->second

#include <iostream>
#include <map>

using namespace std;
int main()
{

map <int,int> mp;

map <int,int> :: iterator it;

for (int i=0; i<10; ++i)
{ mp.insert (pair<int,int> (i, i*i)); }

57

cout << "QUTPUT------—-———- \n";

for (int i=0; i<10; ++i)
{ it = mp.find (i);

cout << it->first << " mapsto " << it->second << endl;

}

return O;

mapsto O
mapsto 1
mapsto 4
mapsto 9
mapsto 16
mapsto 25
mapsto 36
mapsto 49
mapsto 64
mapsto 81

© 00 NO Ok WN - O

25 STL: useful features

| | string | vector| set | map |

?lfgé?rgz)ergig() string vector| set | map

size() string vector| set | map
=length()

operator([] string vector map

pushback() string vector

find() string set | map

default npos end() | end()

substr() string

replace()

insert set | map

e #include <string>
or vector, set, map, or algorithm

e Only string is a class; vector, set, and map, are class téagpla

vector <type>, set <type>
map <typel, type2>

e All the classes contain the given iterators.

58

All classes have functiorsi ze() , with an alternativeé engt h() for strings.

Operator [] works with strings, vectors, and maps. Withngfsi and vectors it works as ex-
pected.

m [x]

returns the value stored far, if X is not there, a paif x, d) is stored wherel is hopefully a
default value.

pushback works on strings and vectors, adding to the end.

find() works on strings, sets, and maps.
e Onastrings,s.find (str) returns the leftmost position where an occurrence
of stringst r begins, defaulstring::npos (ors. npos).

e Onasets,s.find (val) returns anterator from which the entry ins can be
dereferenced: defaudt end() .

e Onamagmm find (val) returns anterator to apair (val, y) can be deref-
erenced; defauln end() .

e substr () andrepl ace() work on strings.

e s.substr (i, ell) returnsthe substring of lengdl | beginning at locatiom .
e s.substr (i, ell) returnsthe substring of lengdl | beginning at locatiom .
e s.replace (i, ell, newwrd) replaces the substring of lenggh | begin-

ning at location , by newwor d.

e i nsert inserts an element into a set or an ordered pair into a map.

25.1 Sorting

There is also

#include <algorithm>

sort (first, last)

eg

sort (v.begin(), v.end());

which takesterators pointing to first and ‘beyond last’ elements to be sortedralt@s contain a lot
of information, and it is enough to sort the object withoutmag the object.

59

26 Recursion

Recursion in C++ and in C works because of thetime stackln this way different copies of local
variables can be held together.
A recursiveroutine or function is one which ‘calls itself. (Or A callsBhich calls A, etcetera).
The most popular example is the factorial function.

#include <iostream>
using namespace std;

int fac (int n)
{
if (n==20)
{
return 1;

}

else

{
return n * fac (n-1);
+
}

int main()

{

cout << "4! is " << fac (4) << endl;

return O;
}
OUTPUT:
4! is 24

Simulating this function. Indentationhelps show how recursion works. The Asterisks are for
alignment.

main calls

fac (4):

* n is 4. It calls

*x fac (3):

* * n is 3. It calls

x *x fac (2)

* * * n is 2. It calls

*x *x * fac (1)

* * * * n is 1. It calls
x % % x fac (0)

60

* n is O.
* returns 1 to...
* here which returns
n*x1=1+to
here which returns
n*x1=2+to
here which returns
n*x 2 =6 to
here which returns
n*x 6 =24 to
here which prints
4! is 24

* ¥ X% x

*
*
*
k
*
*

* X X X X X X ¥

It was mentioned some time back thatal variables and routine/function arguments are stored
on the runtime stackThis ‘stacking’ action is suggested by the indentation. Yee that the same
variablen has several copies sitting in different places on the stack.

Another example is to add together elements of an array.

#include <iostream>
using namespace std;

int sum (int i, int j, int x[])
{
if (1i>3)
return O;
else
return
sum (i, j -1, x) + x[j];
}
int main()
{
int al6] = {3, 1, 4, 1, 5, 9 };
cout << "sum of 6 numbers is " << sum (0, 5, a) << endl;

return O;

}
OUTPUT
sum of 6 numbers is 23

Simulation:

main calls
sum (0, 5, a)

61

* 1 =0, j =5. Calls

* sum (0, 4, a)

* * 1 =0, j =4. Calls

* * sum (0, 3, a)

* * * 1 =0, j=3. Calls

* * * sum (0, 2, a)

* % * xi=0, j=2. Calls

*x *x *x *x sum (0, 1, a)

* * * * * 1 =0, j=1. Calls

* * * * * sum (0, 0, a)

x % k% x *x1i=0, j=0. Calls

* * * * * * sum (0, -1, 0)

* * * * * * * 1 =0, j =-1. Returns 0 to
* * * * * here which returns 0 + x[0] to
* * * * here which returns x[0]+x[1] to

* * * here which returns x[0]+x[1]+x[2] to

* * here which returns x[0]+x[1]+x[2]+x[3] to
* here which returns x[0]+x[1]+x[2]+x[3]+x[4] to

here which returns x[0]+x[1]+x[2]+x[3]+x[4]+x[5] to
here which prints the total.

A recursive version of ‘Russian peasant multiplication.’

#include <iostream>
using namespace std;

int xxx (int m, int n)

{
int temp;
if (m==0)
return O;
else
{
temp = xxx (m/2, n);
if (m% 2==0)
return temp + temp;
else
return temp + temp + n;
b
b

62

int main()

{
cout << "xxx (5, 70) is " << xxx (5, 70) << endl;

return O;
}
OUTPUT
xxx (5, 70) is 350

Simulation

main calls
xxx (5, 70)
*m=25, n=70, temp=?. Calls
xxx (2, 70)
*m=2, n=70, temp = 7. Calls
* xxx (1, 70)
* *m=1, n =70, temp = 7. Calls
* * xxx (0, 70) which returns 0 to
* here which sets temp to O and returns
* x 0+ 0+ 70 to
here which sets temp to 70 and returns
* 70 + 70 + 0 to
here which sets temp to 140 and returns
* 140 + 140 + 70 = 350 to
here which prints
xxx (5, 70) is 350

*

* X X X ¥ ¥ X ¥

27 |EEE standard

In the mid-1980s the IEEE defined a standard for floating{pmafculations.
Nonzero single-precision floating-point numbers are prigted as numbers of the form

il.blbg . bgg X 26, —126 <e < 127

The bitstringlb; . . . bog is called thesignificand(or mantissa. An exponent of-127 is possible; with
by ...bes all zero, this represents zera

Exponentl 28 is also possible, witl, . . . by3 all zero, this representsco. If not all zero, this is
not a numberNaN.

Excludingoo andNaN, we shall call any number representable in this systemrgusesentable
Machine epsilormachis 2723, The smallest representable numbet is

14272 =1+ €mach

63

The IEEE standard requires that, given representable msmbg and an
operationo (add, subtract, multiply, divide), the hardware computesy
exactly rounded. It also mentions square root and compuéimginders.

In double-precision arithmetic, the exponent range is from22 to 1023, with —1023 and1024
used for zero and infinity andaN; there are 52 rather than 23 binary digits after the poird, an

—52
€mach = 2 .

Pretty well all modern processors conform to the IEEE stethda

28 Accuracy of summation

The IEEE standard is concerned witlative error. That is, if X is exact andX is the computed
approximation, 3
X-X

X
or, put differently, ~
X =X(1+96)

whered is small. The significance of this appears in connection watimputing the variance.

(28.1) Proposition Suppose: andd; ,1 < i < n, are given, whereemacy < 1, and|d;| < emacnfor
1 <i<n.Let[[,(1+6&)* =1+6,. Then

SR |

(28.2) Lemma Unlessn is absurdly large, the rounding error in evaluating
X1+ ...+x,

is bounded byy,, 1 > |x;].

Proof. Evaluating gives
Y=

(x4 22)(X4+01) +23)(14+02) + ...+ 20 1)1+ 0p2) +) (1 + 1) =
21 (14 0p-1) +22(1+60p1) +23(1+0p2)+ ...+ 2, (1 +6,) =

(Z fﬂl) -+ 1’1071,1 + $29n,1 -+ 1'397172 + ...+ xn(l -+ 01)

Hered, is a product ofr terms of the form(1 + ¢;) where|d;| < emacn BY the above two lemmas,
0] < ~n—1forl <r <mn,and the overall error is bounded in absolute value by

(e[+ -+ lzaDyna

64

Unfortunately, since the signs of the terms can vary, themoi bound connecting the error to
> x;: the best we can hope for is relate the errop taz;|.
This crops up when we use the following formula for variance

2% —nT” r? — nT?
n—1

As shown with suitable data (where the average is very latge) can be inaccurate. Explanation:
therelative error in computing) ", 27 is still very small, but relative to the true variance it is chu
larger.

On the other hand, i, (x; — 7)?/(n — 1) is calculated directly, the error is very small in com-
parison with the correct value. This is guaranteed by theéelE&andard.

29 Numerical accuracy

An important quantity in floating-point error analysis is

N€mach

=T -
1 — nemach

For example, Gaussian elimination can be related to theabedcL U factorisation of am x n
matrix A
A=LU

wherelL is lower triangular and’ is upper triangular. Computation afandU is related to Gaussian
elimination, and Gaussian elimination amounts to solving

LUX =Y
WhereL andU are computed approximations foandU. Moreover, there is an error bound:
|LU — LU| < 3 |L||U]

where| A| is the matrix of absolute values df.

Pivoting is not involved. If pivoting is involved, theU factorisation is applied not td but to a
row-permuted version ofl. This is a very important difference.

For example, solve (with very small,emacr/4, say),

e

Gauss-Jordan elimination without pivoting yields

e 1 2 e 1 2 e 1 2
1 0 1-1/e 2-1/e 0 -1/e -1/e

The last matrix is with correct roundin@;— 1/e = —1/e correctly rounded, sg9 = 2; substituting,
x = 0. With pivoting,

65

1 1 1
1 2 0 1-e 2-e 0 1 2

whencey = 2 andx = —1. In exact arithmetic,

2—e 2—e
= x:l—
1—ce 1—e

Y

and the computed result is accurate. The inaccuracy — inliberme of pivoting — can be related
to the LU factorisation. With exact arithmetic,

w20][1]

=[] [o e]=[1 o] e
\EHU\:[Ui ?Hg 1/2]:“ 2/2]'

So7,|L||U| allows a large error in thé2, 2) position.

whereas

30 Linear algebra package

There are downloadable linear algebra packages. Carenadi | | 0, and here is an example using
it.

The example is to produce a certain kind of layout for a certad of graph. A graph is repre-
sented abstractly as a list of (unordered) pairs.

For example, six vertices and nine edges

b b

b b

w N =
3D W N
=N =
o o
g W =
D O

b b

Drawn one way, this graph has vertices 1,2,3,4 on the outer fa

Given alayout of the outer vertices (they must form a convaygon), the layout can be extended
barycentricallyto the other vertices, meaning that every internal verteakesaverage (centroid) of
its neighbours.

This can be expressed with matrices. The above example evsluonmarised in the following
input file

6 4
0-1.5 -1

66

N~ O O WwWNH—

For the above example, the following matrix is forfled

1.0000 0 0 0 0 0
0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0
-1.0000 0 0 -1.0000 3.0000 -1.0000
0 -1.0000 -1.0000 0 -1.0000 3.0000

and used to solve two sets of equations. The first charagesahisr-values, the other theg-values.
The right-hand sides are (transposed)

[-15 15 1.5 —15 0 0]"
[-1 -1 1100]"

Here is the code.

#include <iostream>
#include <vector>
#include <armadillo>

//Input format

//n b no.of vertices, no of boundary vertices
//boundary point: index x-value y-value (b times)
//m no. of edges

//edge: vertex from vertex to

//

//Produces coordinates for all the points and
//extra information suitable for drawing the
//graph.

//

//A nuisance job is to rearrange the vertex
//indices to put the boundary points first.

4 No itisn't. That was an old version of the program.

67

using namespace std;

int main()

{
int n, b, m, ix, iy, count;
double x, y, scale;
vector <pair<int,int> > edge;
vector <int> perml, perm2;
arma::imat adjacent;
arma: :mat mainmat;
arma: :mat inverse;
arma::colvec xvals, yvals;
arma::colvec xsol, ysol;

cin >> n >> b;

perml = vector<int>(n,-1);

perm2 = vector<int>(n,-1);
xvals = arma::zeros<arma::colvec>(n,1);
yvals = arma::zeros<arma::colvec>(n,1);

for (int i=0; i<b; ++i)

{
int j;
cin >> j >> x >> y;
xvals(i) = x; yvals(i) = y;

perml[i] = j;
perm2[j] = 1i;
++ count;
}
count = 0;
for (int j = 0; j<n; ++j)
{
if (perm2[j] < 0)
{
perm2[j] = b + count;
++ count;
}
} // this will allow for rearrangement
cin >> m;

adjacent = arma::zeros<arma::imat> (n,n);

68

mainmat = arma::eye<arma::mat> (n, n);

for (int i =0; i<m; ++i)
{
cin >> ix >> iy;
adjacent (perm2[ix], perm2[iy]) =
adjacent (perm2[iy], perm2[ix]) = 1;
// see how the matrix is rearranged

}
for (int i=b; i<n; ++ i)
{
count = 0;
for (int j=0; j<n; ++j)
{
if (adjacent (i,j))
{
++ count;
mainmat (i,j) = -1;
}
}
mainmat (i,i) = count;
+

solve (xsol, mainmat, xvals);
solve (ysol, mainmat, yvals);

cout << n <<’ ? << b << endl;

for (int i=0; i<n; ++i)
cout << xs0l(i) << ’ 7 << ysol(i) << endl;

cout << m << endl;
for (int i=0; i < n; ++i)

{
for (int j=i+1; j<n; ++j)
{
if (adjacent(i,j))
{
cout << 1 << 7 7 << j << 7 2 << xs0l(i) << 7 7 << ysol(i) << 7
<< xs801(j) << 7 ? << ysol(j) << endl;
}
}
}

69

Figure 4: 6-vertex graph with barycentric embedding

Figure 5: Delaunay triangulation of 20 points

return O;

}

This can be viewed in various ways. There are various graptvidg packages such as ‘neato.’
Or if one knows postscript, one can generate a postscripaflevas done for the given example.
Figured b t@ D give bigger examples.

31 Various topics

31.1 Operator overloading

Just as one can have several functions of the same name, oe-g#erpret operators such as
+, —, ==, etcetera. For example.

#include <iostream>
using namespace std;

typedef class Vec2
{

70

Figure 6: barycentric embedding of same graph

Figure 7: Delaunay triangulation of 100 points

71

Figure 9: Voronoi diagram of same 100 points

72

public:
Vec2 (int, int);
int xQ;
int y(O;
void print(Q);
Vec2 operator + (Vec2 other);
bool operator == (Vec2 other);

private:
int a, b;
} Vec?2;

Vec2::Vec2 (int x, int y)
{
a=x; b=y;

3

Vec2 Vec2::operator + (Vec2 other)

{
return Vec2 (atother.x(), b+other.y());

¥

bool Vec2::operator == (Vec2 other)

{
return (a == other.x() && b == other.y());

by

void Vec2: :print()
{

cout << a << ’ 7 << b << endl;

int Vec2::x()
{

return a;

}

int Vec2::yQ)
{

return b;

}
int main()
{
Vec2 a = Vec2 (1,2), b = Vec2 (3,4), c = Vec2 (4,6), d4(0,0);

73

d = atb;

a.print();

b.print();

c.print();

d.print(Q);

cout << (c == d) << endl;

return O;

31.2 Reference and pointers

C++ allows forreference typewhich are different fronpointer types.

int a, *b, &c;

declaresa, b, c to be integer, pointer to integer, and reference to integankile. The compiler
will not permit c to be declared without initialisation. It must be initi&tto another variable or
array member.

Reference-type variables have been seen in routine argement

#include <iostream>
using namespace std;

int main()
{
int x, &y = x, z, al3], &w = a[l];
// a and w not used: just showing
// they are accepted.

x = 14;
= X;
z = 20;

<

cout << x << 7 ? KKy << 7 ? KL z << endl;
++x;

b

74

cout << x << 7 ? KK y << 7 ? KL z << endl;
++y;

cout << x << 7 7 KKy << 7 ? << z << endl;
y =2

cout << y << 7 7 <<z <K< 7 2 K< z << endl;
++y;

cout <K y << 7 7 K< z << 7’ << z << endl;

return O;

14 14 20
15 15 20
16 16 20
20 20 20
21 20 20

31.3 Routine arguments and this

In a class objectthis is theaddressof the object. Class memba&rcan be accessed a8i s- >X.
Throught hi s, one can access class members whose names have been taketingyaxguments.
For example

#include <iostream>
using namespace std;

typedef class Complex

{
public:
Complex (double x, double y);
void print();

private:
double x,y;
} Complex;

void Complex: :print()
{

cout << x << " + " <<y << " i\n";

}

Complex: :Complex (double x, double y)
{

75

this->x = x; this->y = y;
b

int main()

{
Complex z (1, 2);
z.print();
return O;

31.4 Privacy

Question. What's the point of privacy?

Answer. The difference between a pointer-friendly language sucl agth its struct-based
objects and an object-oriented language withclssbased objects is that the structures in C are
inert, and can be modified anywhere.

In C++ the objects are more like agents, each with its own jotatoy out. Even though they
are probably created by the same programmer, they are potedllto interfere with each other. The
‘private’ sections of the class are something like notesctvlaire made during performance of your
job. You rely on the notes being the notes you wrote, not taetpwith. Hence the use of private
sections in class definitions.

31.5 Const

In C++const means
the item is constansort of

const double pi = 3.14159;

means what it says, but

| void print (const C & x) |

means thak is of type C, passed by reference, but that the rougmre nt will not (knowingly)
changex. If Coccupies a lot of memory, this saves time and space, usikbgaeference, and gives
the kind of protection against alteration guaranteed usatigby-value.

This is the most common usagecaoinst .

Constants inside classes are peculiar. With the keyworticstdney must be initialised as they
would be outside classes, and without that keyword they teistitialised in a peculiar way illus-
trated below.

#include <iostream>
//adapted from Ellis Stroustrup p 292

76

using namespace std;

// Illustrating use of ‘this’ to free names
// for routine arguments.

typedef class Bl { public: B1(int); int x; } B1;
B1l::Bi(int x){this->x = x;7}
// Illustrating peculiar notions of constants

typedef class D
{
public:
D(int);
const int c;
static const int x = 29;
} D;

// Constant c is not to be changed
// after constructing an object,
// but its initialisation is required

// USING ONLY THE STYLE shown

D::D(int a): c(a+4)
{3

int main()

{
D d(10);
cout << d.c << endl << d.x << endl;

return O;

¥

32 Syllabus for May 2014 exam

Anything in the quizzes is fair game for the final exam. Als@&cps of code which occurred in
programming assignments could be asked.

e Datatypeschar, int, bool, double.

i

Assignment statements, if, while, etcetera.

Arrays. Address calculation (1 and 2-dimensional arrafsjay initialisation for tables.
Character strings. Command-line arguments, atoi(), atof().

Functions and routines. Call by value; how array argumemtpassed; call by reference.
Simulating functions and routines.

Variables with the same name.

Random numberdsRAND_MAX. Non-random effects of using modular arithmetic to resthe
range, with linear congruential generators. Better metHgataducing random integers in a
restricted range.

Structures (introduced only as a prelude to classes).

Classes. Class members. Public and private. Overloadingatpeverloading.
Evaluating expressions: order of evaluation; mixed-tyg@essions; casts.
Simulating recursive routines and functions.

Files: ifstream, ofstream, opening a file, closing, cin,tceof(), getline().

Standard template librarystri ng, vector, set, nap. Iterators used for traversing,
also infind() andsort(). Use of*it orit->... whenit is an iterator. References and
pointers.

You should know the STL functions and operators mentioneskictior 25b.

IEEE standard: machine-epsilon for single and doubleigi@t Accuracy of LU factorisation
and of summation.

78

	Hello world
	Variables
	Assignment statements and arithmetic
	Compound statements and for-loops
	If-statements
	While-loops
	Arrays, input, initialisation
	Character strings
	Addresses of array elements
	Functions and routines
	Simulating routines and functions
	2-dimensional arrays
	Call by reference; also, overloading
	Variables all over the place
	Random numbers
	Coins and dice.

	Command-line arguments
	Structures
	Complicated details: please skip
	For example, matrices.
	Continuing complicated details: please skip

	Classes
	Casts and mixed arithmetic expressions
	Casts
	Expressions of mixed arithmetic type

	Class Vec3
	Code for the class member functions and routines

	Files
	Templates, constants, etcetera
	Templates
	Constants in classes

	Object-oriented programming
	Pairs
	Replacing words

	Iterators
	Sorting
	Maps

	STL: useful features
	Sorting

	Recursion
	IEEE standard
	Accuracy of summation
	Numerical accuracy
	Linear algebra package
	Various topics
	Operator overloading
	Reference and pointers
	Routine arguments and this
	Privacy
	Const

	Syllabus for May 2014 exam

