
Mathematics 1262 (introduction to C++), Hilary 2013

Colm Ó Dúnlaing

March 31, 2014

Contents
Hello world 1
Variables 2
Assignment statements and arithmetic3
Compound statements and for-loops4
If-statements5
While-loops6
Arrays, input, initialisation 7
Character strings 8
Addresses of array elements9
Functions and routines10
Simulating routines and functions11
2-dimensional arrays12
Call by reference; also, overloading13
Variables all over the place14
Random numbers15
Command-line arguments16
Structures 17
Classes18
Casts and mixed arithmetic expressions19
Class Vec320
Files21
Templates, constants, etcetera22
Object-oriented programming 23
Iterators 24
STL: useful features25
Recursion26
IEEE standard 27
Accuracy of summation28
Numerical accuracy29
Linear algebra package30
Various topics31
Syllabus for May 2014 exam32

1



1 Hello world

As always, we begin with ‘Hello world.’
C++ programs get data from keyboard/disc/etcetera, and write data to terminal/disc/etcetera.

Writing data is calledoutput.
In C++ the preferred style for output is throughcout. For example

/*

* This C++ program prints a greeting

*/

#include <iostream>

// Always needed.

using namespace std;

// Almost always needed.

int main()

{

cout << "hello" << endl << "It’s a nice day" << endl;

return 0;

// A convention.

}

Weird? The idea (see Conor Houghton’s notes) is thatcout is like a pipe connecting the program
to the terminal, and the<< operator shifts data along the pipe. First hello, then a newline, then a
greeting, and another newline.

Such a program should be stored in a file calledhello.cpp or something similar. Next it must
becompiled: a special program to convert it into ‘machine code’ which thecomputer can execute.
The compiler on Unix machines is called

g++

The default name for the machine code (for historical reasons) isa.out.
You can run it by just typinga.out.

%g++ hello.cpp

%a.out (the next two lines are printed by the program)

hello

It’s a nice day

2



Advanced topic.If you want to give the machine code a more meaningful name, such asmyprog,

g++ -o myprog hello.cpp

More advanced.What’s the# include<iostream> needed for?
Because the input/output system isn’t actually part of the C++language, but a system that is stored

in a ‘library’ and brought in as needed.iostream refers to a file which contains all the information
g++ needs to make sense of statements such as

cout << "hello" << endl;

You can inspect the file if you want — it’s extraordinarily complicated. (On Unix machines,
/usr/include/c++/...)

Very advanced.What’s theusing namespace std;for?
Names are used all over the place, and the namespace is — used in very large projects — like a

surname. Most of the time everything has the surnamestd. When you haveusing namespace
std; the ‘full name’ ofcout would bestd::cout. You might have reasons to usecout as another
name, and you could set things up so your owncout is murphy::cout.

The upshot is: if you leave out theusing namespace std; you cannot usecout, endl
on their own, but must usestd::cout, std::endl.

Finally, that return 0; statement.The value is returned somehow to the ‘operating system.’ I
don’t know how to get that value.return 0; conventionally means ‘this program ran with no
problems’ and nonzero means ‘there were errors running thisprogram.’

2 Variables

Like most programming languages, C++ programs obtain data from keyboard/disc/etcetera, store it
in variables, operate on the variables, and write data to terminal/disc.

Really, a variable is a name for a piece of data. There are different kinds of data

• The minimal data is abit, which can be 0 or 1. A group of 8 bits forms abyte, which is
effectively the smallest piece of data — hence kilobyte, megabyte, gigabyte, terabyte.

• Character data — letters, digits, punctuation, etcetera, are stored under the ASCII encoding.

• An integeris stored in 4 bytes under a scheme which allows a range of about ±2 billion.

• A booleanis an integer restricted to 0 or 1. Equivalent to a bit, it is probably stored as a byte.

• A double-precisionfloating-point number is stored in 8 bytes under various conventions which
allow a range of roughly±21000 but with 52 bits of precision.

Very roughly, this allows numbers to be represented in the form

±10e × a.bc . . .

where−300 < e < 300 (very roughly) with about 15 or 16 decimal places of accuracy.

3



• There are also short and long integers, single-precision floating-point, and various ‘unsigned’
alternatives, which we won’t look at.

/*

* Basic declarations involve ‘types’

* bool, char, short, int, long, float, double,

* and various ‘unsigned’ combinations.

*/

// Example declarations

bool a;

int bc_2, Def, def;

// These are variables. Names are case-sensitive.

// statements are terminated by semicolon.

// Also, constants; a name for pi...

const double pi = 3.14159;

// Also, ‘enumeration types.’

enum Colour = { Red, Green, Blue };

// This gives a handy way of naming colours.

// Actually, the compiler converts them to integers.

3 Assignment statements and arithmetic

The most basic operation (beyond printing greetings) isarithmetic assignnment. Here are some
declarations and assignment statements.

int a, b=0, c; // a,c have unpredictable values, b is intialised to 0

double d, e, f;

c = c+1; // adds 1 to c, a new unpredictable value;

b = b+2; // now b is 2

c = 3/4; // c becomes ZERO: integer division rounds toward zero

d = 3/4; // d becomes 0.00

e = 3.0/4; // e becomes 0.75

4



Arithmetic statements use the operators+,-,*,/,% — the last is the remainder after division,
or ‘mod.’

Short-cuts includea += b; which addsb toa, andc++, c--, ++c, --cwhich increment
and decrementc (the difference betweenc++ and++c is a fine one.)

Remainder%. Integer division rounds towards zero.

100 / 13 evaluates to 7 and 100 % 13 evaluates to 9.

-100 / 13 evaluates to -7 and -100 % 13 evaluates to -9.

This is different from the mathematical convention where the remainder is always non-negative. Un-
der the mathematical conventions,−100÷ 13 = −8 and−100 (mod 13) = 4.

4 Compound statements and for-loops

Statements can be grouped together within braces{}, to form compound statements.

perform A;
B?

true

false

perform D;

perform C;

for (A; B; C)
{ D; }

Figure 1: for loop

For-loops are the preferred method of repeating statementsin C++. The above figure allows all
the possibilities, but one shouldn’t be too fancy. The statementA in the picture would be something
like ‘i=0,’ initialising a variable i; the statementBwould be something like ‘i< 10’; and the statement
C should adjust the value ofi in each iteration of the loop.

#include <iostream>

using namespace std;

int main ()

{

int i;

for ( i=0; i<10; ++i )

{

cout << "7 x " << i << " = " << 7 * i << endl;

}

5



return 0;

}

output.....

7 x 0 = 0

7 x 1 = 7

7 x 2 = 14

7 x 3 = 21

7 x 4 = 28

7 x 5 = 35

7 x 6 = 42

7 x 7 = 49

7 x 8 = 56

7 x 9 = 63

6



Arithmetic relations are

< less than

<= less than or equal

== equal

emphatically NOT =

which means ASSIGNMENT

> greater than

>= greater than or equal

!= not equal

Relations can be combined using

&& logical and

emphatically NOT & which

means something else

|| logical or

emphatically NOT | which

means something else

! logical negation

5 If-statements

if (A)
{ B; }

true

falseA?

perform B

if (A)
{ B; }
else
{ C; }

A?
false

true

perform B

perform C

Figure 2: if and if-else statements

#include <iostream>

using namespace std;

int main ()

{

7



int i;

for ( i=0; i<10; ++i )

{

if ( i % 2 == 1 )

{

cout << "7 x " << i << " = " << 7 * i << endl;

}

}

return 0;

}

output

7 x 1 = 7

7 x 3 = 21

7 x 5 = 35

7 x 7 = 49

7 x 9 = 63

6 While-loops

while (A)
{ B; }

A? false

true

perform B

Figure 3: while loop

While-loops are obviously similar to for-loops. Their first important use is in controlling input.
The following program reads numbers from the terminal (or more correctly, the keyboard) and echoes
them. The expression! cin.eof() means: ‘while the input streamcin has not reached end-of-file.’

When entering data from the terminal, end-of-data is signalled by

ctrl-D

at the beginning of a line (I don’t think it works elsewhere).Not just a newline.

#include <iostream>

using namespace std;

8



main()

{

int n;

while ( ! cin.eof() )

{

cin >> n;

cout << "The number you typed in was " << n << endl;

}

return 0;

}

However, it doesn’t work properly. Here is a sample run

% a.out

0

That was 0

1

That was 1

^D

That was 1

%

What’s happening is that the end-of-file condition becomes trueonlyafter an ‘unsuccessful’ read.
The following program does it properly.

#include <iostream>

using namespace std;

int main()

{

int n;

bool finished;

finished = false;

while ( ! finished )

{

cin >> n;

if ( cin.eof ())

finished = true;

else

9



cout << "That was " << n << endl;

}

return 0;

}

Sample run

%a.out

27182

That was 27182

314159

That was 314159

^D

%

7 Arrays, input, initialisation

Array subscripting in C++ uses square brackets. To declare anarray of 100 elements, double-
precision,

double a[100]

• Array indexing begins at 0. C++ (and C) is unusual here. The highest index is 99.

• Each array entry occupies 8 bytes, so the total size of the array is 800 bytes.

• The array entries are stored in consecutive addresses

a0, a0 + 8, a0 + 16, . . . , a0 + 99 ∗ 8.

• Array indexing iscompletely unchecked.A reference toa[-1] would not be rejected, just
converted to an addressa0−8. It may cause the program to crash at runtime. Again, a reference
to a[100] converts to an addressa0 + 800, which is outside the range of the array.

In the example program below, note the test for end-of-data:
cin.eof()

#include <iostream>

// program reads numbers into an array and prints their sum.

using namespace std;

main()

10



{

double a[100], next;

int i, count;

double total;

count = 0;

while ( count < 100 && ! cin.eof() )

{

cin >> next;

// corrected C++ code

if ( ! cin.eof () )

{

a[count] = next;

++ count;

}

}

// At this point count gives the number of

// items stored in the array. Note the precaution

// that count cannot be > 100. Excessive input

// entries are ignored.

total = 0;

for ( i=0; i < count; ++i )

{

total += a[i];

}

cout << count << " items, total " << total << endl;

return 0;

}

Compile and run (with a largeish file temp. Notice how it’s used)

%g++ array.cpp

%a.out < temp

100 items, total 9957.69

%

Various features of arrays can be extracted using for-loops. For example, instead of calculating
the sum of the elements, one can calculate their maximum. This requires an if-statement.

// This is an incomplete piece of code. It is assumed that the

// array a has been read in as above. A double-precision variable

11



// maximum is assumed.

if ( count == 0 )

cout << "Nothing read in, maximum undefined" << endl;

else

{

maximum = a[0];

for ( i = 1; i<count; ++i )

{

if ( a[i] > maximum )

{

maximum = a[i];

}

}

cout << count << " items read, maximum " << maximum << endl;

}

...... compile and run as modified

% g++ maximum.cpp

% a.out < temp

100 items read, maximum 101

%

An obvious application of arrays is to store data for statistical analysis. Linear algebra is another
obvious application. A third and less obvious use is fortables.For example,

const int offset[12] = {0,3,3,6,1,4,6,2,5,0,3,5};

Notice that an array can beinitialised. This is very useful. That particular array is useful in deducing
the day-of-week from a given date (it is a running sum, modulo7, of the lengths of months in an
ordinary year.) There is an example programweekday.cpp which converts any date in this century
to day-of-week.

8 Character strings

• A character in C is denoted ’A’, ’b’, ’9’, etcetera.

• There are some special characters;

’\n’ newline character (can be used in place of endl but not vice-versa)

’\t’ tab character

’\0’ null character. This is not the full list.

• A character string is anarray of characters.

12



• Since the size of an array is ignored, there must be another way to mark the end of a character
string.

• Thenull charactermarks the end of a character string. Hence a string of lengthn is stored in
n+ 1 bytes.

• Initialisation is possible in two styles

char hello[100] = "hello";

char goodbye[100] = {’g’,’o’,’o’,’d’,’b’,’y’,’e’,’\0’};

• For technical reasons,

char * my_string;

is another way of declaring character strings. However, unlike an array, no storage is reserved
except by aninitialiser .

• For example,

const char * dayname[] = {"Sunday","Monday",... etcetera ... , "Saturday"};

Note in this example that the size of the array is not specified. The compiler deduces it — i.e.,
size 7 — from the initialiser.

9 Addresses of array elements

Because C++ arrays have first index 0, the formula for array indexing is as follows.

Address of a[i] =

address of a[0] +

i * (element size in bytes)

In an array of size n, the total memory used by the array

is n * (element size in bytes)

Given an array declaration

<type> <array name> [ <array size> ] (= optional initialiser) ;

E.g.,

double a [ 14 ];

The array size, i.e., the number of elements, is not necessary if an initialiser is given. The type can
bechar, int, long, double, bool etcetera.

13



• There is a ‘pseudo-function’sizeof() which gives the size associated with certain types.
For example,sizeof(char) is 1,sizeof (int) is 4,sizeof (long) (long integer)
is 4 or 8 depending on the machine,sizeof ( double ) is 8, sizeof ( bool ) appears to be
1.

• If the size of array items iss and the size of the array itself isn, then the total storage occupied
by the array issn. For the given example, the total array size is 112 bytes.

• For example, if the example arraya begins at address1234, thena[10] is stored at address
1234 + 10 ∗ 8 = 1314.

10 Functions and routines

For the past two weeks we have looked at C programs where all the code is in the part headed
main().

Large-scale C++ programs can run to tens of thousands of lines, possibly hundreds. They can’t
all be stuffed between two braces followingmain().

In fact, a program is usually separated into many ‘basic’ or ‘primitive’ procedures: deciding what
is ‘primitive’ is the main part of the design process.

As usual we look at some silly examples.
Reconsider a program of the ‘hello world’ kind as one which prints a message: the primitive

operation is to write a message. Accordingly the program includes aroutinemessage( bool x
).

C++ allowsroutineswhich do things andfunctionswhich calculate things.

void message ( bool x ) ...

void means ROUTINE. This does something.

double average ( int n, double x[] )

Here, double means double-precision-floating-point-valued FUNCTION.

This computes something.

Functions ‘return’ the value they compute using

return statements.

#include <iostream>

using namespace std;

void message ( bool x )

{

if ( x )

cout << "Hello" << endl;

else

cout << "Goodbye" << endl;

14



}

main()

{

message ( true );

message ( false );

return 0;

}

%a.out

Hello

Goodbye

%

Theaverage example is much more interesting.

#include <iostream>

using namespace std;

double average ( int n, double x[] )

{

int i;

double total;

total = 0;

for ( i=0; i < n; ++i )

{

total += x[i];

}

return total / n;

}

main()

{

double a[100], next;

double av;

int i, count;

count = 0;

while ( count < 100 && ! cin.eof() )

{

15



cin >> next;

if ( ! cin.eof () )

{

a[count] = next;

++ count;

}

}

av = average ( count, a );

cout << "Average of " << count << " numbers is " << av << endl;

return 0;

}

running:

%a.out < data/big

Average of 100 numbers is 1e+06

This looks pretty grotty. It’s time to fine-tune ourcout << ... statements. Unfortunately, I
have the most primitive idea of how to do this.

The following changes produce a better output.

Add

#include <iomanip>

// i/o manipulation !

and change the output statement to

cout << setprecision(20) <<

"Average of " << count << " numbers is " << av << endl;

This produces the output

Average of 100 numbers is 1000000.546875

11 Simulating routines and functions

Here to ‘simulate’ a routine means (given its arguments) to write down the sequence of values taken
by its variables, and thereby compute what it computes. For example

int xxx ( int n )

{

int i, x;

16



x = 0;

for ( i=0; i<n; ++i )

{

x += i;

}

return x;

}

--------

xxx (4):

n i x

4

0

0

0

1

1

2

3

3

6

returns 6

It is important to tabulate the values in the order they are created, i.e., not to have them side-by-side

n i x

4 0 0

1 1

2 3

3 6

returns 6

It is too confusing.Exercise: what does this compute, givenn ≥ 0?
Another example (every routine is namedxxx)

int xxx ( int m, int n )

{

int i, x;

x = 0;

for ( i=0; i<m; ++i )

{

x += n;

}

return x;

}

17



Exercise: simulatexxx ( 3, 4 ). What doesxxx ( m, n) compute in general, givenm ≥
0?

And another

int xxx ( int m, int n )

{

int x;

x = 0;

while ( m > 0 )

{

if ( m % 2 == 1 )

x += n;

m = m/2;

n = n * 2;

}

return x;

}

This is calledRussian peasant multiplication.
Notice that the argumentsm andn are ‘used’ as local variables. This is safe because they are

copies of expressions in the calling program. If they were call-by-reference then it would be a mistake
to use them this way.

The idea behind Russian peasant multiplication can be usefulin practice. For example, a modified
form of this routine can be used to calculatemn — still not useful — and to calculateAm if A is a
square matrix. This is useful as the number of multiplications is proportional tolog2 m rather than
m.

int xxx ( int m, int n )

{

int x,y,z;

x = m;

y = n;

while ( y > 0 )

{

z = x % y;

x = y;

y = z;

}

return x;

}

This is Euclid’s gcd algorithm, an old favourite.

18



12 2-dimensional arrays

Two-dimensional arrays are a logical extension of ordinaryarrays. For example,

int b[3][4];

has 12 entries and size 48 (in bytes). In general, if the ‘sizeof’ array entry type iss, m ‘rows’ and
n ‘columns,’ the array occupiessmn bytes.

C++ convention dictates thatb is equated to an array of arrays, that is, an array of 3 arrays of 4
ints. To calculate positions in the array, we need the fact that each ‘row’ of the array is 4 ints, so it
has size 16. Ifb starts at addresse, thenb[i][j] has addresse+ 16i+ 4j.

Strangely,each ‘row’b[i] has avalue,and that value is the address where the row begins. This
is consistent with thei-th row being a 1-dimensional array.

In general, given ‘sizeof’ array entries iss, starting address ise, and there aren ‘columns,’ the
address of the[i][j] entry is

e+ ins+ js

For example, suppose

long int c[5][9];

andc begins at address 4000.
Sizeof long int: 4 or 8 bytes depending on machine.

Sizeof row: 36 or 72 bytes.

Suppose long ints occupy 8 bytes.
Value of c[3] is 4000 + 3× 72 = 4216.
Addressof c[2][5] is 4000 + 2× 72 + 5× 8 = 4184.

13 Call by reference; also, overloading

In this section we touch on a subtle and very important question about function/routine arguments:
‘Call by value’ versus ‘call by reference.’ The upshot is that

• By default, arguments are call-by-value.

• Array arguments are effectively call-by-reference.

• C++ (unlike C) allows call-by-reference.

Suppose our program needs to read in a matrix using a routine such as

void read_matrix ( int m, int n, double a[10][10])

• An array of fixed size is passed in which to store the matrix.

19



• The argumentsm andn are supplied as the ‘correct’ dimensions. obviously they can be no
more than10 in either dimension. There is no simple way to pass 2-dimensional arrays of
variable dimension.

• Routine arguments are usually ‘call by value.’ All argumentsm, n, a are call by value. This
means that the routineread matrix() works withcopiesof whatever the calling program
passed. Ifread matrix() changed them, it is only copies which would be changed, and the
changes would be forgotten when the routine returned.

• Shouldn’t the same hold for the matrixa? No. An array variable in C++ is stored as anaddress,
that is, the address of the first array element. This is very economical: no matter how big an
array is passed to a subroutine, all that is actually passed is the 4 or 8 bytes giving its starting
address.

So an assignment toa[i][j] within read matrix() becomes an assignment to ‘row i,
column j in an array whose starting address is . . . ’ This is an array in the calling program.

Unlike C, C++ has an explicitcall-by-referencestyle for passing arguments:

void read_matrix ( int & m, int & n, double a[10][10] )

Now a copy ofm is not passed: a copy of theaddressof m is passed. Any operations onm within
read matrix() affect thecalling variable.

In particular,read matrix() can readm andn and communicate them to the calling program.
Function overloading. C++, unlike C, allows the same function name to be used several times,

so long as the argument lists are distinguishable. For example (not that this does anything, but you
see the idea)

#include <iostream>

using namespace std;

double sum ( int n, double x[] )

{

}

int sum ( int n, int x[] )

{

}

int main()

{

return 0;

}

20



14 Variables all over the place

• Variables declared within routines/functions, includingcall-by-value arguments, areautomatic,
only existing within the run of the routine. They are stored on theruntime stackin astack frame
for the routine.

• Variables can be declared at the top of the.cpp file. These areglobal, and are visible from all
routines.

• In C++, variables can be declared almost anywhere.

• Variables can also be declared withinblocks: a block is a group of statements{ ...} be-
tween braces. They are local to the block.

• Variables can be declared at theheadof for-loops, such as

for ( int i = 0; i<100; ++i )

{

....

}

Example.

#include <iostream>

using namespace std;

int n = 0;

void a ()

{

cout << "a " << n << endl;

}

void b ( int n )

{

cout << "b " << n << endl;

}

void c ( int k )

{

n = k;

}

int main ()

{

21



int i, n, j;

n = 25;

a();

b(33);

c(55);

a();

for ( i=0; i<n; ++i )

{ }

cout << "i " << i << endl;

for ( j = 4; j < 10; ++j )

{

int i = j*j;

cout << "i " << i << " ";

}

cout << endl;

cout << "i " << i << endl;

cout << "j " << j << endl;

j = 100;

cout << "j " << j << endl;

for ( int j = 4; j < 10; ++j )

{

int i = j*j;

cout << "i " << i << " ";

}

cout << endl;

cout << "i " << i << endl;

cout << "j " << j << endl;

}

%a.out

a 0

b 33

a 55

i 25

i 16 i 25 i 36 i 49 i 64 i 81

22



i 25

j 10

j 100

i 16 i 25 i 36 i 49 i 64 i 81

i 25

j 100

15 Random numbers

A random number generatoris a system for producing a long sequence ofpseudo-randomnumbers.
These are not random, because first the sequence is always thesame, and second the sequence is
generated by some fairly simple rule. In C++

#include <cstdlib>

rand() produces a pseudo-random number between 0

and RAND_MAX, a predefined constant

and

srand() ‘sets a seed.’

One can create uniformly-distributed double-precision numbers by taking an integer random num-
ber and dividing it byRAND MAX + 1.

This needs to be done carefully,
elseRAND MAX + 1 will be negative!

The sequence isintendedto be the same each time. To get a different sequence each time, one
can use a ‘random seed.’ Look atrand double.cpp:

#include <iostream>

#include <cstdlib>

#include <sys/time.h>

using namespace std;

static bool seeded = false;

/*

* cstdlib is needed for rand()

* sys/time.h (the .h means a C file) is used for

* setting a random ‘seed’ by the microseconds part

* of the system clock.

* Probability against repetition roughly a million to 1.

*/

static void seed ()

23



{

struct timeval tv;

gettimeofday ( & tv, NULL );

srand ( tv.tv_usec );

}

Explanation. gettimeofday() is a C library function. Structures will be discussed very
soon. The& in gettimeofday( & tv, NULL means that anaddressis passed — C does not
have call-by-reference.

Here is thetimeval structure (fromman gettimeofday in Unix)

struct timeval {

long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */

};

So whatseed() does is to ‘read the clock’ and use the microseconds as a seed for the random
number generator.

By the way, thatstatic means ‘private.’

double rand_double()

{

double divisor;

divisor = RAND_MAX;

divisor += 1;

// This is to ensure double-precision calculations.

// RAND_MAX+1 is negative in integer arithmetic.

if (! seeded )

{

seed ();

seeded = true;

}

return rand() / divisor;

}

15.1 Coins and dice.

As an exercise, we can use random number generators to simulate the throwing of two dice. Here is
dice.cpp

24



#include <cstdlib>

#include <sys/time.h>

using namespace std;

static bool seeded = false;

static void seed ()

{

struct timeval tv;

gettimeofday ( & tv, NULL );

srand ( tv.tv_usec );

}

int rand_6()

{

if (! seeded )

{

seed ();

seeded = true;

}

return (rand() % 6) + 1;

}

main( int argc, char * argv[])

{

int n = atoi ( argv[1] );

int i,j,k;

double count[13];

double table[13] =

{ 0, 0, 1.0/36, 2.0/36, 3.0/36, 4.0/36, 5.0/36,

6.0/36, 5.0/36, 4.0/36, 3.0/36, 2.0/36,

1.0/36};

for (i=0; i<13; ++i)

count[i] = 0;

for (i=0; i<n; ++i)

{

j = rand_6();

k = rand_6();

25



count[ j+k ] += 1;

}

cout << "out of " << n << " throws\n";

for ( i=2; i<=12; ++i)

{

cout << i << " came up a proportion of " << count[i]/n <<

" times (probability " << table[i] << ")\n";

}

}

This worked well on one machine

On a PC running Linux, the result of ‘dice’ was:

out of 10000 throws

2 came up a proportion of 0.0273 times (probability 0.0277778)

3 came up a proportion of 0.0558 times (probability 0.0555556)

4 came up a proportion of 0.0876 times (probability 0.0833333)

5 came up a proportion of 0.1108 times (probability 0.111111)

6 came up a proportion of 0.1426 times (probability 0.138889)

7 came up a proportion of 0.1681 times (probability 0.166667)

8 came up a proportion of 0.1335 times (probability 0.138889)

9 came up a proportion of 0.1081 times (probability 0.111111)

10 came up a proportion of 0.0864 times (probability 0.0833333)

11 came up a proportion of 0.0525 times (probability 0.0555556)

12 came up a proportion of 0.0273 times (probability 0.0277778)

But look at what happened on the maths machines:

On boole (and turing) the result was

out of 10000 throws

2 came up a proportion of 0 times (probability 0.0277778)

3 came up a proportion of 0.1081 times (probability 0.0555556)

4 came up a proportion of 0 times (probability 0.0833333)

5 came up a proportion of 0.219 times (probability 0.111111)

6 came up a proportion of 0 times (probability 0.138889)

7 came up a proportion of 0.3341 times (probability 0.166667)

8 came up a proportion of 0 times (probability 0.138889)

9 came up a proportion of 0.225 times (probability 0.111111)

10 came up a proportion of 0 times (probability 0.0833333)

11 came up a proportion of 0.1138 times (probability 0.0555556)

12 came up a proportion of 0 times (probability 0.0277778)

What’s the difference? As a clue, we do a coin-tossing simulation (evens.cpp)

26



#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

int i;

for ( i=0; i<10; ++i )

{

if ( i>0 )

{ cout << " "; }

cout << rand() % 2;

}

cout << endl;

return 0;

}

Again, compare answers from a PC and from boole:

pc:

1 0 1 1 1 1 0 0 1 1

boole:

0 1 0 1 0 1 0 1 0 1

So theboole output is not at all random. This means that alinear congruentialgenerator is
being used to producer1, r2, r3, . . .:

rn+1 = arn + b (mod R)

wherea andb are constants andR is RAND MAX + 1. The point is thatR is a power of 2, and ifxn

is rn (mod 2) then
xn+1 = a′xn + b′ (mod 2)

wherea′, b′ are the residues ofa andb, modulo2. Since

a′x+ b′ (mod 2) =



















0

1

x

x+ 1

there is no room for randomness. This caused the problem alsoin dice.cpp. In consequence:

27



Careful about using remainders.Linear congruential generators arenot random in the low bits.
Evidently other kinds of generator are used on Linux PCs.

How can one compensate for this problem?Basically, to produce random numbers in the range
0 . . . n− 1, get a randomreal-valuednumbers in the interval[0, 1), and returnsn.

#include <iostream>

#include <cstdlib>

// coin.cpp

// Produces 10 random bits. Not degraded

// by linear congruential generators.

using namespace std;

int randbit()

{

const double scale = 1.0 / (1.0 + RAND_MAX );

// This is a reliable way to scale

// It forces RAND_MAX to be converted

// to double before adding 1.0

// Note: RAND_MAX + 1 (integer arithmetic)

// is -2^31

double drand;

drand = rand();

// random number, converted to integer

drand *= scale;

// scaled to the interval [0,1)

return ( drand >= 0.5 );

// uniform [0,1) has probability 1/2 of

// being >= 1/2

}

int main()

{

int i;

for ( i=0; i<10; ++i )

{

if ( i>0 )

{ cout << " "; }

cout << randbit();

}

cout << endl;

28



return 0;

}

16 Command-line arguments

When you run a program,a.out, say, anything betweena.out and end-of-line is acommand-line
argument.

For example,

a.out infile outfile

a.out 10000

• The command-line arguments are character strings

• They do not contain blanks (unless quotes are used)

• They are available to the program

• They are character strings, but can be converted to integer or double using the built-in functions
atoi(), atof()

They are available to the program as follows.

• Instead ofint main(), writeint main ( int argc, char * argv[] )

• argc gives the number of command-line arguments,including the program namesuch as
a.out.

• argv[0], a character string, is the name of the program

• For1 ≤ i < argc, argv[i] is thei-th command-line argument.

a.out in_file out_file

argv[0]: a.out

argv[1]: in_file

argv[2]: out_file

a.out 10000

argv[0]: a.out

argv[1]: 10000

This is a character string.

To use it, write something like

n = atoi ( argv[1] );

29



or maybe

x = atof ( argv[1] );

To use atof() or atoi(), you need

#include <cstdlib>

17 Structures

In programming it is important to collect data in usable units. This can be done in C++ (rarely: C++
has much better ways of doing it) usingstructures. For example, without structures we might write
functions of 3-vectors like

double norm ( double x, double y, double z )...

(if one chooses not to use arrays). Now a structure with 3 components can be established as a new
type

typedef struct { double x,y,z; } VEC3;

main()

{

VEC3 a;

a.x = 1; a.y = 2; a.z = 3;

// this is how to get the components

// of VEC3

cout << a.x << " " << a.y << " " << a.z << endl;

}

17.1 Complicated details: please skip

Unfortunately, we must go further with this.

VEC3 *a;

declares a variablea to be theaddressof a VEC3. It haspointer type. (Compare withchar *
argv[]).

This will not be covered in lectures, but the notes are retained (see below).

30



17.2 For example, matrices.

Structures are used to ‘package’ data. We have seen some examples involving matrices. But routines
for matrices generally need three items:

• The height, call itm

• The width, call itn

• A 2-dimensional array such atdouble a[10][10]

It would make good sense to define a structure such as

typedef struct

{

int height, width;

double entry[10][10];

} MATRIX;

Now, at least, the height and width and matrix proper are keptin the same place, and you could
refer to them as follows

MATRIX mat;

...

... mat.height ...

... mat.width ...

... mat.entry[i][j]

This is restrictive, since height and width cannot exceed 10, and if less than 10 there is wasted
space. Structures are really a C feature, not important in C++, and in C one can overcome these
restrictions using tricks with pointers.

17.3 Continuing complicated details: please skip

They are accessed as shown below. (The combined character− > is supposed to resemble an arrow
which ‘points’ to where an item is stored.

a->x = 1; a->y = 2; a->z = 3;

In connection with pointer types, C++ provides a way tocreatea memory region which can hold
aVEC3: new.

VEC3 * a = new VEC3;

31



In practice, variables of structure type are rare; pointer types are more common.

#include <iostream>

#include <cmath> // for sqrt

using namespace std;

typedef struct {double x,y,z;} VEC3;

void print_vec ( VEC3 * a )

{

// Prints without newlines

cout << a->x << " " << a->y << " " << a->z;

}

VEC3 * make_vec ( double x, double y, double z )

// ‘makes’ a vector with the given components.

{

VEC3 * vec = new VEC3;

// space has been reserved

vec->x = x; vec->y = y; vec->z = z;

// values are copied

return vec;

}

void delete_vec ( VEC3 * vec )

{

// to avoid ‘memory leaks.’ A technicality.

delete vec;

}

Cross product, dot product, determinant:

VEC3 * cross_prod ( VEC3 * a, VEC3 * b )

{

return

make_vec (

a->y * b->z - a->z * b->y,

a->z * b->x - a->x * b->z,

a->x * b->y - a->y * b->x );

}

double dot_prod ( VEC3 * a, VEC3 * b )

{

32



return a->x * b->x + a->y * b->y + a->z * b->z ;

}

double det ( VEC3 * a, VEC3 * b, VEC3 * c )

{

double d;

VEC3 * bc = cross_prod ( b, c );

d = dot_prod ( a, bc );

delete_vec ( bc );

return d;

}

int main()

{

VEC3 * a, * b, * c, * d;

double len;

a = make_vec ( 1, 2, 3 );

b = make_vec ( 4, 5, 6 );

c = make_vec ( 7, 8, 8 );

d = cross_prod ( a, b );

cout << "a "; print_vec ( a ); cout << endl;

len = sqrt ( dot_prod ( a, a );

cout << "length " << len << endl;

cout << "b "; print_vec ( b ); cout << endl;

cout << "c "; print_vec ( c ); cout << endl;

cout << "a x b "; print_vec ( d ); cout << endl;

cout << "(a x b) dot c " << dot_prod ( d, c ) << endl;

cout << "det(a,b,c) " << det ( a,b,c ) << endl;

return 0;

}

18 Classes

Object-oriented programming is where the data is organisedinto groups ofobjects. C++ is intended
for this style of programming. It adds greatly to the power ofa language.

What separates C++ from C is the notion ofclass, an idea which probably appeared first in the
language SIMULA67. An object is aninstanceof a class.

33



C++ regards the Cstruct, union,1 C++ classes as closely related, but ‘structs’ and ‘unions’
only contain data. Classes contain data and also functions which operate with and on that data.

C is a ‘small’ language and in the space of a term it is possibleto learn almost all of it. C++ may
also be small, but classes are very sophisticated and take a lot of getting used to. As usual, we take a
silly example to start.

#include <iostream>

using namespace std;

typedef class Boa

{

public:

void speak ();

void toggle ();

void showbit();

private:

int bit;

} Boa;

Definition. An incomplete function or routine declaration such asspeak(); which is followed
by a semicolon, not{. . . code. . .}, is called afunction or routine prototype . It describes the argu-
ment and return types, which are often needed before the codehas been supplied.

What do public and private mean? Try

int main()

{

Boa a;

cout << a.bit << endl;

return 0;

}

Note. Members of classes are identified using the dot notation justas withstructs. A member
can be a variable, as withstruct (a ‘field’ in C), or a function or routine.

This won’t compile.

%g++ boa_0.cpp

boa_0.cpp: In function ’int main()’:

boa_0.cpp:12: error: ’int Boa::bit’ is private

boa_0.cpp:20: error: within this context

1 Unions were used in C to save space. They are probably obsolete. In C++ they are unnecessary because of ‘class
inheritance.’ (I think.)

34



So, makebit public.

typedef class Boa

{

public:

void speak ();

void toggle ();

void showbit();

int bit;

} Boa;

This time it did compile, and the output was

-1218875404

So obviously class objects aren’t initialised. How about

typedef class Boa

{

public:

void speak ();

void toggle ();

void showbit();

int bit = 0;

} Boa;

This doesn’t compile

boa_1.cpp:12: error: ISO C++ forbids initialization of member ’bit’

boa_1.cpp:12: error: making ’bit’ static

boa_1.cpp:12: error: ISO C++ forbids in-class initialization of

non-const static member ’bit’

So this doesn’t work.2 We’ll come back to the initialisation problem later, and geton with the
other pieces. We have to include code forspeak(), toggle(), showbit(). These can be
written almost like ordinary functions. The only difference is a prefixBoa::.

void Boa::speak ()

{

2I tried to get a rationale for this: googling revealed that C++ doesn’t allow such initialisation but Java and C# do. One
concludes that its implementation was considered a nuisance by the C++ designers, but would not have been impossible.

35



if ( bit )

cout << "Hello\n";

else

cout << "Goodbye\n";

}

Strictly speaking,bit should bebool, but C++ and C both accept general integer values as truth
values. Any nonzero integer is interpreted as true: only 0 isfalse.

void Boa::toggle ()

// toggle changes 0 to 1 and 1 to 0

{

bit = 1 - bit;

}

void Boa::showbit()

{

cout << bit << endl;

}

int main()

{

Boa a;

a.speak();

a.showbit();

a.toggle();

a.showbit();

a.speak();

return 0;

}

Why theshowbit()? Becausebit is private, so it can’t be seen from outside, whatever that
means. The object itself has full access to the memberbit which it owns.This program compiles,
and works, except for the initialisation problem.

Hello

-1218101260

1218101261

Hello

Initialisation is handled throughconstructors. We need to add one more routine. It is declared in
a slightly different way from normal routines, and it is named Boa.

Here is a full program.

36



#include <iostream>

using namespace std;

typedef class Boa

{

public:

Boa(); // constructor

void speak ();

void toggle ();

void showbit();

private:

int bit;

} Boa;

void Boa::speak ()

{

if ( bit )

cout << "Hello\n";

else

cout << "Goodbye\n";

}

void Boa::toggle ()

{

bit = 1 - bit;

}

void Boa::showbit()

{

cout << bit << endl;

}

Boa::Boa()

{

bit = 1;

}

int main()

{

Boa a;

int i;

37



cout << "a.showbit () initially " ; a.showbit();

for (i=0; i<5; ++i)

{

a.speak();

a.toggle();

}

cout << "a.showbit () finally " ; a.showbit();

return 0;

}

%a.out

a.showbit () initially 1

Hello

Goodbye

Hello

Goodbye

Hello

a.showbit () finally 0

19 Casts and mixed arithmetic expressions

19.1 Casts

• When assigning a value to a variable, the types should match, with some exceptions in the case
of numerical values.

• One can assign The type of a variable is clear: it has to be declared. For the type of an expres-
sion, it is not clear. However, the types of constants are generally easy to recognise.

’\n’ character

"hello" character string

-45 int

1.23 double

true bool

• A double value can be assigned to an int, and vice-versa. Conversion of int to double is direct,
that is,3 becomes3.0. Double to ints arerounded towards zero,so1.23 becomes1 and−1.23
becomes−1.

• An expression can be converted to another type usingcasts. The syntax is

38



( ... type .... ) expression

such as

( double ) 1;

• Also, expressions can have subexpressions of different types. For example,

1 + 2.34

is 3.34. More about this later.

We now have a clean solution to that difficultRAND MAX problem: this constant is the maxi-
mum positive integer value, and if we add 1, we get the minimumnegative integer value. Cast it to
double, and add 1.

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

const int bad = 1 + RAND_MAX;

// The compiler issues a warning, but goes ahead.

const double rm_p_1 = 1 + (double) RAND_MAX;

cout << "bad " << bad << endl;

cout << "rand_max + 1 " << rm_p_1 << endl;

return 0;

}

------------------

%g++ temp.cpp

temp.cpp: In function int main():

temp.cpp:9: warning: integer overflow in expression

alcom5% a.out

bad -2147483648

rand_max + 1 2.14748e+09

%

19.2 Expressions of mixed arithmetic type

An expression can be a combination of other expressions using +,−, ∗, /,%. Where two subexpres-
sions of different types are combined,

39



• Surprisingly,chars are promoted to ints.

This can be problematic if there is ‘sign extension.’ A char with a face value> 127 has ‘high
order bit 1’ and on some machines (including the maths machines) it is converted to a negative
integer.

• bools are converted to ints.

• ints are converted to doubles.

• Floats arealwaysconverted to doubles in any arithmetic calculation.

Going back to

const double rm_p_1 = 1 + (double) RAND_MAX;

the expression on the right mixes int with double; the 1 is converted to double before adding.
One last example.

1 - 2.3 - 4 is evaluated from left to right

1 - 2.3 is -1.3

-1.3 - is -5.3

1 + 2/3 becomes 1 + 0 then 1

1 + 2.0/3 = becomes 1 + 0.666667 then 1.666667

20 Class Vec3

This class is for the usual vector computations inR
3. It’s a variation ofstruct VEC3, turned into

a class.

#include <iostream>

#include <cmath>

using namespace std;

typedef class Vec3

{

public:

Vec3();

Vec3( double, double, double );

double x();

double y();

double z();

void copy ( Vec3 );

Vec3 cross_prod ( Vec3 );

40



double dot_prod ( Vec3 );

double norm();

double det ( Vec3, Vec3 );

void print();

private:

double x1, x2, x3;

} Vec3;

• There aretwo constructors, distinguishable by their argument lists. This is an example of
overloading.

• Vec3 (double, double, double) is enough of a prototype. You don’t need to write
Vec3 (double x, double y, double z).

• This may be a bad idea, butx() is supposed to be thex-component, privatelyx1. This is a
way of publishing the components.

• copy() is supposed to copy the components of another vector into thecurrent one.

• cross prod () returns aVec3. It’s used in the following style:

c = a.cross_prod ( b )

• Likewisedot prod(). Determinant is

a.det ( b, c)

• And norm() takes no arguments, just returning the norm of the current vector:

n = a.norm();

• Finally,

#include <cmath>

is needed because a mathematical functionsqrt() is used.

20.1 Code for the class member functions and routines

Vec3::Vec3() // argument-free constructor

{

x1 = x2 = x3 = 0;

}

41



Vec3::Vec3 ( double xx, double yy, double zz )

// Constructs vector with given components

{

x1 = xx; x2 = yy; x3 = zz;

}

double Vec3::x()

// the x-component

{

return x1;

}

double Vec3::y()

// the y-component

{

return x2;

}

double Vec3::z()

// the z-component

{

return x3;

}

void Vec3::copy ( Vec3 other )

// Copies other to here; a routine;

// overwrites current values:

// doesn’t return a new Vec3.

{

x1 = other.x(); x2 = other.y(); x3 = other.z();

}

// For comparison, code from the ‘C-style’ struct

// VEC3 is shown, ‘commented out.’

//VEC3 * cross_prod ( VEC3 * a, VEC3 * b )

//{

// return

// make_vec (

// a->y * b->z - a->z * b->y,

// a->z * b->x - a->x * b->z,

// a->x * b->y - a->y * b->x );

//}

42



Vec3 Vec3::cross_prod ( Vec3 other )

// returns a.cross_prod ( b ) ....

{

double xx, yy, zz;

xx = y() * other.z() - z() * other.y();

yy = z() * other.x() - x() * other.z();

zz = x() * other.y() - y() * other.x();

return Vec3(xx, yy, zz);

}

//double dot_prod ( VEC3 * a, VEC3 * b )

//{

// return a->x * b->x + a->y * b->y + a->z * b->z ;

//}

double Vec3::dot_prod ( Vec3 other )

{

return

x1 * other.x() + x2 * other.y() + x3 * other.z();

}

double Vec3::norm ()

{

return sqrt ( x1*x1 + x2*x2 + x3*x3 );

}

//double det ( VEC3 * a, VEC3 * b, VEC3 * c )

//{

// double d;

// VEC3 * bc = cross_prod ( b, c );

// d = dot_prod ( a, bc );

// delete_vec ( bc );

// return d;

//}

double Vec3::det ( Vec3 b, Vec3 c )

{

return

dot_prod ( b.cross_prod ( c ) );

}

//void print_vec ( VEC3 * a )

//{

43



// // Prints without newlines

// cout << a->x << " " << a->y << " " << a->z;

//}

void Vec3::print ()

{

cout << x1 << " " << x2 << " " << x3;

// no newline

}

int main()

{

Vec3 a(1,2,3), b(4,5,6), c(7,8,8);

Vec3 d = a.cross_prod ( b );

cout << "a "; a.print(); cout << endl;

cout << "b "; b.print(); cout << endl;

cout << "c "; c.print(); cout << endl;

cout << "a x b\n"; d.print(); cout << endl;

cout << "norm " << d.norm() << endl;

cout << "(a x b) dot c\n" << d.dot_prod ( c ) << endl;

cout << "det(a,b,c)\n" << a.det(b,c)<< endl;

return 0;

}

-------------------output

% a.out

a 1 2 3

b 4 5 6

c 7 8 8

a x b

-3 6 -3

norm 7.34847

(a x b) dot c

3

det(a,b,c)

3

%

21 Files

Up to now, input has been taken from the keyboard (or indirectly, using<, from a file, and output has
been to the screen or indirectly, using>, to a file.

44



This is the tip of the iceberg. C++ offers very elaborate file-handling facilities.
We shall mention only a few. For further information, consult the cplusplus.com reference web

page.

• ifstream is a type (actually a class) which allows input from a named file.

• ofstream for output.

• A file must beopened— connected to a named file.

• Output files must beclosed, otherwise their contents will be lost.

• Operations used withcin, cout can be used here. In particular,<<, >>, and member function
eof().

• An alternative way of reading data is using the member functiongetline ( buffer, count ). This
transfers input into the array ‘buffer’ as a string. It readsup to the next newline, if any, but with
a limit on the number of characters read.

Buffer is a character array — 200 characters, say; and count gives a maximum number of
characters allowed. Under the string conventions, a stringends with ‘
0’ — so at most 199 characters are read.

• You need to include<fstream>.

Here is an example. It uses astring class, of which we shall see more later.
Why? It was mentioned before that the>> operator can be used to read data (fromcin) into

character arrays. This is dangerous, because there is no control on the number of characters read.
The C++string class allows for strings of any length. Reading this way into aC++ string is perfectly
safe.

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main( int argc, char * argv[])

{

ifstream input;

char buffer[200];

bool finished;

string s;

input.open ( argv[1] );

finished = false;

45



cout << "-----------------INPUT line by line------------------" << endl;

while ( ! finished )

{

input.getline ( buffer, 200 );

if ( input.eof () )

finished = true;

else

cout << buffer << endl;

}

input.close();

input.open ( argv[1] );

finished = false;

cout << endl << "-----------------INPUT word by word------------------"

<< endl;

while ( ! finished )

{

input >> s;

if ( input.eof () )

finished = true;

else

cout << s << endl;

}

return 0;

}

Sample output:

-----------------INPUT line by line------------------

Ladle Rat Rotten Hut

Wants pawn term, dare worsted ladle gull hoe lift wetter

murder inner ladle cordage, honor itch offer lodge, dock,

-----------------INPUT word by word------------------

Ladle

Rat

Rotten

Hut

46



Wants

pawn

term,

dare

worsted

ladle

gull

hoe

lift

wetter

murder

inner

ladle

cordage,

honor

itch

offer

lodge,

dock,

22 Templates, constants, etcetera

22.1 Templates

C++ allows generalised functions and classes. Class templatedefinitions are as follows

template <class T> class <class name> { ... };

where<T> is a ‘type parameter.’ We shall not be concerned with writinggeneric classes or functions.
But we shall use them. Using a class template is simple:

#include <vector>

vector <int> x;

uses aclass templatevector, and declaresx to be avector of ints.
Less easy to understand is a function or routine template. Here is one we shall use.

template <class RandomAccessIterator>

void sort ( RandomAccessIterator first, RandomAccessIterator last );

This is a template becauseRandomAccessIterator is an incomplete class — that is, not all its
functions are coded. Sorting works through a kind of magic. More later.

47



22.2 Constants in classes

One can use constants within class definitions.3 For example, suppose one created a classString
for character strings. This would be ridiculous, because there is already a classstring which can
do almost anything with character strings.

#include <iostream>

using namespace std;

typedef class String

{

public:

String();

static const int max = 1000;

String ( char * buf );

void print();

private:

char store[ max ];

} String;

String::String ()

{

store[0] = ’\0’;

}

int main()

{

String s;

cout << "s.max is " << s.max << endl;

cout << "String::max is " << String::max << endl;

return 0;

}

It is necessary to add the keyword ‘static’ tomax. Otherwise the compiler says that ISO C++ forbids
initialisation.

Notice something rather odd:
It is possible to useString::max independent of any variable of classString.

For example, in the ‘real’ string class, there is an enormousconstantnpos, apparently the same
asRAND MAX, which is the maximum possible length of strings. It is used for default values. It can
be referred to via

3Many features can be declared inside classes, such astypedef.

48



...

#include <string>

...

... string::npos ...

23 Object-oriented programming

Object-oriented programming is where the data is organisedinto objects, larger units than the basic
int, char, double, etcetera. The class mechanism in C++ is intended for object-oriented
programming.

C++ comes with astandard template library, a collection of prefabricated classes. These include
string, vector, set, map,and others. Used properly, a great deal of programming effort can be
avoided. The web-page

http://www.cplusplus.com/reference

is extremely useful, our ‘bible.’ It has a full description of the various classes discussed below, and
plenty more besides.

• Reading a text file line-by-line (getline()) or word by word (>>).

• Reading words and storing them in avector.

Note. The vector class is aclass template. One can have vectors of ints, of doubles, of
strings, and so on: this must be specified, as for example in

#include <vector> // can’t use vector objects without this

...

vector<string> v;

...

• Reading words, reducing them (#include <cctype>) by removing non-alphanumeric char-
acters, and storing.

• Reading words, storing, and sorting the vector: then the words appear in sorted order.

• Reading words, storing them in aset, and printing them using an iterator. They are printed in
sorted order, without repetitions.

set is a class template: one usesset <string> and so on.

49



23.1 Pairs

There is aclass templatepair which enables one to construct ordered pairs. For example,

pair <int, int> p;

defines a variablep. You can get its components through

p.first

p.second

Example.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector < pair <int,int> > v;

int i;

for (i=0; i<10; ++i)

v.push_back ( pair <int, int> ( i, i*i ) );

cout << "OUTPUT-----------\n";

for (i=0; i<10; ++i)

cout << v[i].first << ’ ’ << v[i].second << endl;

return 0;

}

OUTPUT -------------------------

0 0

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

50



23.2 Replacing words

We shall write a program to replace occurrences of one word byanother. This shows the power of
thestring class.

We use the following member functions.

• string(buffer): constructor; constructs a string containing the characters inbuffer (up
to ’\0’).

• find ( word ) returns the starting position of the earliest occurrence ofthe word within
the string.

• If the word does not occur in the string,find returnsstring::npos, an effectively ‘infinite
value.’ (Probably232 − 1).

• replace ( pos, len, newword) removeslen characters beginning atpos in the
string, insertingnewword in its place.

#include <iostream>

#include <cstdlib>

using namespace std;

int main( int argc, char * argv[] )

{

bool finished;

char buffer[ 200 ];

string oldword, newword, str;

oldword = string ( argv[1] );

newword = string ( argv[2] );

finished = false;

while ( ! finished )

{

cin.getline ( buffer, 200 );

if ( cin.eof() )

finished = true;

else

{

str = string ( buffer ); // convert

int i = str.find ( oldword );

while ( i < string::npos )

{

str.replace ( i, oldword.length(), newword );

51



i = str.find ( oldword );

}

cout << str << endl;

}

}

return 0;

}

-----------------------------------

a.out groin-murder GREENMUTTER < ../data/ladle

Ladle Rat Rotten Hut

Wants pawn term, dare worsted ladle gull hoe lift wetter

murder inner ladle cordage, honor itch offer lodge, dock,

florist. Disk ladle gull orphan worry putty ladle rat cluck

wetter ladle rat hut, an fur disk raisin pimple colder

Ladle Rat Rotten Hut.

Wan moaning, Ladle Rat Rotten Hut’s murder colder inset.

"Ladle Rat Rotten Hut, heresy ladle basking winsome burden

barter an shirker cockles. Tick disk ladle basking tutor

cordage offer groinmurder hoe lifts honor udder site offer

florist. Shaker lake! Dun stopper laundry wrote! Dun

stopper peck floors! Dun daily-doily inner florist, an

yonder nor sorghum-stenches, dun stopper torque wet

strainers!"

"Hoe-cake, murder," resplendent Ladle Rat Rotten Hut, an

tickle ladle basking an stuttered oft.

Honor wrote tutor cordage offer GREENMUTTER, Ladle Rat

Rotten Hut mitten anomalous woof.

" Wail, wail, wail! " set disk wicket woof, "Evanescent

Ladle Rat Rotten Hut! Wares are putty ladle gull goring

wizard ladle basking?"

"Armor goring tumor GREENMUTTER’s," reprisal ladle gull.

"Grammar’s seeking bet. Armor ticking arson burden barter

an shirker cockles."

"O hoe! Heifer gnats woke," setter wicket woof, butter

taught tomb shelf, "Oil tickle shirt court tutor cordage

offer GREENMUTTER. Oil ketchup wetter letter, an den

52



O bore!"

Soda wicket woof tucker shirt court, an whinney retched a

cordage offer GREENMUTTER, picked inner windrow, an sore

debtor pore oil worming worse lion inner bet. En inner

flesh, disk abdominal woof lipped honor bet, paunched honor

pore oil worming, an garbled erupt. Den disk ratchet

ammonol pot honor GREENMUTTER’s nut cup an gnat-gun, any

curdled ope inner bet.

Inner ladle wile, Ladle Rat Rotten Hut a raft attar

cordage, an ranker dough ball. "Comb ink, sweat hard,"

setter wicket woof, disgracing is verse. Ladle Rat Rotten

Hut entity betrum an stud buyer GREENMUTTER’s bet.

"O Grammar!" crater ladle gull historically, "Water bag

icer gut! A nervous sausage bag ice!"

"Battered lucky chew whiff, sweat hard," setter

bloat-Thursday woof, wetter wicket small honors phase.

"O Grammar, water bag noise! A nervous sore suture

anomolous prognosis!"

"Battered small your whiff, doling," whiskered dole woof,

ants mouse worse waddling.

"O Grammar, water bag mouser gut! A nervous sore suture

bag mouse!"

Daze worry on-forger-nut ladle gull’s lest warts. Oil offer

sodden, caking offer carvers an sprinkling otter bet, disk

hoard hoarded woof lipped own pore Ladle Rat Rotten Hut an

garbled erupt.

Mural: Yonder nor sorghum stenches shut ladle gulls stopper

torque wet strainers.

24 Iterators

Definition Paraphrasedfrom the C++ reference:
An iterator is any object that,

• pointing to an object within a range (collection) of objects

53



• has the ability toiterate through the elements of that collection

• using a set of operators (including at least++ (increment) and dereference (∗) operators).

Dereference: In C, if a is the address of a piece of data, then∗a is the piece of data. ‘Derefer-
encing a’ means getting the piece of data stored at a.

Iterators provide uniform ways of traversing objects in various different orders. Classes such as
string, vector, set, map, include them. They are also used to define the range for generic
sorting routines.

They generally involve highly complex expressions such as

pair <map<string,int>::iterator, bool> ret;

This defines a variableret whose type is apair (see above) of items, the first being a

map<string,int>::iterator

Explanation.
map is a class template. Within any class one can have public and private typedefs. For

example,

#include <iostream>

using namespace std;

typedef class A

{

public:

typedef int I;

} A;

int main()

{

A::I i = 234;

cout << i << endl;

return 0;

}

Anyway, it is ok to use

map<string,int>::iterator

as the name for a type.
The general style for iterators is

54



for ( ITERATOR TYPE it = v.begin(); it != v.end(); ++it )

For example

for ( set<string>::iterator it = v.begin();

it != v.end(); ++it )

Also, an iterator returns apointerto an item each time. It was mentioned before, but only in passing:
if i is of type ‘pointer to x’ then∗i is the item pointed to. This is important in the example below.

Forward and reverse iterators are provided. Here again is a small program to print out words taken
from the input. It removes non-alphanumeric characters. Itusesreverseiterators, so the results

#include <iostream>

#include <string>

#include <cctype>

#include <set>

#include <algorithm>

using namespace std;

int main()

{

bool finished;

string str;

string trunc;

set<string> v;

finished = false;

while ( ! finished )

{

cin >> str;

if ( cin.eof() )

finished = true;

else

{

trunc = string();

for ( int i=0; i<str.length(); ++i )

if ( isalnum ( str[i] ) )

trunc.push_back ( str[i] );

if ( trunc.length() > 0 )

v.insert ( trunc );

}

}

for ( set<string>::reverse_iterator i = v.rbegin();

i != v.rend(); ++ i )

55



{

cout << * i << endl;

}

return 0;

}

Running it on our ‘Ladle Rat’ sample text, we get

your

yonder

wrote

worsted

worse

worry

worming

woof

etcetera

Further points.

• An iterator is used to traverse collections.

• They are used also to pinpoint locations in sophisticated objects, ‘containers,’ such as sets or
maps; cffind().

• They contain plenty of information. In fact, they contain enough information to sort the object
completely. For example,

sort (v.begin(), v.end())

24.1 Sorting

To illustrate the last,

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{ int list[6] = {3,1,4,1,5,9};

vector < int > v;

for (int i = 0; i<6; ++i)

56



{ v.push_back ( list[i] );

}

sort ( v.begin(), v.end() );

for ( int i=0; i<v.size(); ++i )

{ cout << v[i] << ’ ’;

}

cout << endl;

return 0;

}

24.2 Maps

There is a class templatemap<domain type, codomaintype> which is very useful for storing
features or properties of things.

• It is a little awkward to use, since it is essentially asetof pair<domain type, codomaintype>,
and when inserting, one creates and inserts a pair.

• Iterators are returned when consulting the map. Such an iterator can be treated as apointer to
a pair.

Note. Recall that ifx is of typepair <...> then its two components arex.first and
x.second.

If x is of typepointer to pair... then its two components are

(*x).first and (*x).second

There is an alternative notation:

x->first and x->second

#include <iostream>

#include <map>

using namespace std;

int main()

{

map <int,int> mp;

map <int,int> :: iterator it;

for ( int i=0; i<10; ++i )

{ mp.insert ( pair<int,int> ( i, i*i ) ); }

57



cout << "OUTPUT-----------\n";

for ( int i=0; i<10; ++i )

{ it = mp.find ( i );

cout << it->first << " mapsto " << it->second << endl;

}

return 0;

}

OUTPUT-----------

0 mapsto 0

1 mapsto 1

2 mapsto 4

3 mapsto 9

4 mapsto 16

5 mapsto 25

6 mapsto 36

7 mapsto 49

8 mapsto 64

9 mapsto 81

25 STL: useful features
string vector set map

begin(), end(),
rbegin(), rend()

string vector set map

size()
string
=length()

vector set map

operator[] string vector map
pushback() string vector
find() string set map
default npos end() end()
substr()
replace()

string

insert set map

• #include <string>

or vector, set, map, or algorithm

• Only string is a class; vector, set, and map, are class templates:

vector <type>, set <type>

map <type1, type2>

• All the classes contain the given iterators.

58



• All classes have functionssize(), with an alternativelength() for strings.

• Operator [] works with strings, vectors, and maps. With strings and vectors it works as ex-
pected.

m [ x ]

returns the value stored forx; if x is not there, a pair(x, d) is stored whered is hopefully a
default value.

• pushback works on strings and vectors, adding to the end.

• find() works on strings, sets, and maps.

• On a strings, s.find ( str ) returns the leftmost position where an occurrence
of stringstr begins, defaultstring::npos (or s.npos).

• On a sets, s.find ( val ) returns aniterator from which the entry ins can be
dereferenced: defaults.end().

• On a mapm, m.find ( val ) returns aniterator to apair (val, y) can be deref-
erenced; defaultm.end().

• substr() andreplace() work on strings.

• s.substr ( i, ell) returns the substring of lengthell beginning at locationi.

• s.substr ( i, ell) returns the substring of lengthell beginning at locationi.

• s.replace ( i, ell, newword ) replaces the substring of lengthell begin-
ning at locationi, bynewword.

• insert inserts an element into a set or an ordered pair into a map.

25.1 Sorting

There is also

#include <algorithm>

sort ( first, last )

eg

sort ( v.begin(), v.end() );

which takesiteratorspointing to first and ‘beyond last’ elements to be sorted. Iterators contain a lot
of information, and it is enough to sort the object without naming the object.

59



26 Recursion

Recursion in C++ and in C works because of theruntime stack.In this way different copies of local
variables can be held together.

A recursiveroutine or function is one which ‘calls itself.’ (Or A calls Bwhich calls A, etcetera).
The most popular example is the factorial function.

#include <iostream>

using namespace std;

int fac ( int n )

{

if ( n == 0 )

{

return 1;

}

else

{

return n * fac ( n-1 );

}

}

int main()

{

cout << "4! is " << fac ( 4 ) << endl;

return 0;

}

OUTPUT:

4! is 24

Simulating this function. Indentationhelps show how recursion works. The Asterisks are for
alignment.

main calls

fac (4):

* n is 4. It calls

* fac (3):

* * n is 3. It calls

* * fac (2)

* * * n is 2. It calls

* * * fac (1)

* * * * n is 1. It calls

* * * * fac (0)

60



* * * * n is 0.

* * * * returns 1 to...

* * * * here which returns

* * * n * 1 = 1 to

* * here which returns

* * n * 1 = 2 to

* here which returns

* n * 2 = 6 to

here which returns

n * 6 = 24 to

here which prints

4! is 24

It was mentioned some time back thatlocal variables and routine/function arguments are stored
on the runtime stack.This ‘stacking’ action is suggested by the indentation. Yousee that the same
variablen has several copies sitting in different places on the stack.

Another example is to add together elements of an array.

#include <iostream>

using namespace std;

int sum ( int i, int j, int x[] )

{

if ( i > j )

return 0;

else

return

sum ( i, j - 1, x ) + x[j];

}

int main()

{

int a[6] = {3, 1, 4, 1, 5, 9 };

cout << "sum of 6 numbers is " << sum (0, 5, a ) << endl;

return 0;

}

OUTPUT

sum of 6 numbers is 23

Simulation:

main calls

sum (0, 5, a)

61



* i = 0, j = 5. Calls

* sum (0, 4, a)

* * i = 0, j = 4. Calls

* * sum (0, 3, a)

* * * i = 0, j = 3. Calls

* * * sum (0, 2, a)

* * * * i = 0, j = 2. Calls

* * * * sum (0, 1, a)

* * * * * i = 0, j = 1. Calls

* * * * * sum (0, 0, a)

* * * * * * i = 0, j = 0. Calls

* * * * * * sum ( 0, -1, 0)

* * * * * * * i = 0, j = -1. Returns 0 to

* * * * * here which returns 0 + x[0] to

* * * * here which returns x[0]+x[1] to

* * * here which returns x[0]+x[1]+x[2] to

* * here which returns x[0]+x[1]+x[2]+x[3] to

* here which returns x[0]+x[1]+x[2]+x[3]+x[4] to

here which returns x[0]+x[1]+x[2]+x[3]+x[4]+x[5] to

here which prints the total.

A recursive version of ‘Russian peasant multiplication.’

#include <iostream>

using namespace std;

int xxx ( int m, int n )

{

int temp;

if ( m == 0 )

return 0;

else

{

temp = xxx ( m/2, n );

if ( m % 2 == 0 )

return temp + temp;

else

return temp + temp + n;

}

}

62



int main()

{

cout << "xxx ( 5, 70 ) is " << xxx ( 5, 70 ) << endl;

return 0;

}

OUTPUT

xxx ( 5, 70 ) is 350

Simulation

main calls

xxx ( 5, 70 )

* m = 5, n = 70, temp=?. Calls

* xxx ( 2, 70)

* * m = 2, n = 70, temp = ?. Calls

* * xxx ( 1, 70)

* * * m = 1, n = 70, temp = ?. Calls

* * * xxx ( 0, 70) which returns 0 to

* * here which sets temp to 0 and returns

* * * 0 + 0 + 70 to

* here which sets temp to 70 and returns

* * 70 + 70 + 0 to

here which sets temp to 140 and returns

* 140 + 140 + 70 = 350 to

here which prints

xxx ( 5, 70 ) is 350

27 IEEE standard

In the mid-1980s the IEEE defined a standard for floating-point calculations.
Nonzero single-precision floating-point numbers are interpreted as numbers of the form

±1.b1b2 . . . b23 × 2e, −126 ≤ e ≤ 127

The bitstring1b1 . . . b23 is called thesignificand(or mantissa). An exponent of−127 is possible; with
b1 . . . b23 all zero, this represents± zero.

Exponent128 is also possible, withb1 . . . b23 all zero, this represents±∞. If not all zero, this is
not a number, NaN.

Excluding∞ andNaN, we shall call any number representable in this system, justrepresentable.
Machine epsilonǫmach is 2−23. The smallest representable number> 1 is

1 + 2−23 = 1 + ǫmach.

63



The IEEE standard requires that, given representable numbers x, y and an
operation◦ (add, subtract, multiply, divide), the hardware computesx ◦ y
exactly rounded. It also mentions square root and computingremainders.

In double-precision arithmetic, the exponent range is from−1022 to 1023, with −1023 and1024
used for zero and infinity andNaN; there are 52 rather than 23 binary digits after the point, and

ǫmach= 2−52.

Pretty well all modern processors conform to the IEEE standard.

28 Accuracy of summation

The IEEE standard is concerned withrelative error. That is, ifX is exact andX̃ is the computed
approximation,

X − X̃

X

or, put differently,
X̃ = X(1 + δ)

whereδ is small. The significance of this appears in connection withcomputing the variance.

(28.1) Proposition Supposen andδi , 1 ≤ i ≤ n, are given, wherenǫmach < 1, and|δi| ≤ ǫmach for
1 ≤ i ≤ n. Let

∏

i
(1 + δi)

±1 = 1 + θn. Then

|θn| ≤ γn.

(28.2) Lemma Unlessn is absurdly large, the rounding error in evaluating

x1 + . . .+ xn

is bounded byγn−1

∑

|xi|.

Proof. Evaluating gives

∑

xi =

((((x1 + x2)(1 + δ1) + x3)(1 + δ2) + . . .+ xn−1)(1 + δn−2) + xn)(1 + δn−1) =

x1(1 + θn−1) + x2(1 + θn−1) + x3(1 + θn−2) + . . .+ xn(1 + θ1) =

(
∑

xi) + x1θn−1 + x2θn−1 + x3θn−2 + . . .+ xn(1 + θ1)

Hereθr is a product ofr terms of the form(1 + δi) where|δi| ≤ ǫmach. By the above two lemmas,
|θr| ≤ γn−1 for 1 ≤ r ≤ n, and the overall error is bounded in absolute value by

(|x1|+ . . .+ |xn|)γn−1.

64



Unfortunately, since the signs of the terms can vary, there is no bound connecting the error to
∑

xi: the best we can hope for is relate the error to
∑

|xi|.
This crops up when we use the following formula for variance

∑

i
x2
i
− nx2

n− 1

As shown with suitable data (where the average is very large), this can be inaccurate. Explanation:
the relativeerror in computing

∑

i
x2
i

is still very small, but relative to the true variance it is much
larger.

On the other hand, if
∑

i
(xi − x)2/(n − 1) is calculated directly, the error is very small in com-

parison with the correct value. This is guaranteed by the IEEE standard.

29 Numerical accuracy

An important quantity in floating-point error analysis is

γn =
nǫmach

1− nǫmach
.

For example, Gaussian elimination can be related to the so-called LU factorisation of ann × n
matrixA

A = LU

whereL is lower triangular andU is upper triangular. Computation ofL andU is related to Gaussian
elimination, and Gaussian elimination amounts to solving

L̃ŨX = Y

WhereL̃ andŨ are computed approximations toL andU . Moreover, there is an error bound:

|LU − L̃Ũ | ≤ γn|L̃||Ũ |

where|A| is the matrix of absolute values ofA.
Pivoting is not involved. If pivoting is involved, theLU factorisation is applied not toA but to a

row-permuted version ofA. This is a very important difference.
For example, solve (withe very small,ǫmach/4, say),

[

e 1
1 1

] [

x
y

]

=

[

2
1

]

Gauss-Jordan elimination without pivoting yields

e 1 2 e 1 2 e 1 2

1 1 1 0 1-1/e 2-1/e 0 -1/e -1/e

The last matrix is with correct rounding;2 − 1/e = −1/e correctly rounded, soy = 2; substituting,
x = 0. With pivoting,

65



1 1 1 1 1 1 1 1 1

e 1 2 0 1-e 2-e 0 1 2

whencey = 2 andx = −1. In exact arithmetic,

y =
2− e

1− e
x = 1−

2− e

1− e

and the computed result is accurate. The inaccuracy — in the absence of pivoting — can be related
to theLU factorisation. With exact arithmetic,

LU =

[

1 0
1/e 1

] [

e 1
0 1− 1/e

]

=

[

e 1
1 1

]

= A

whereas

L̃Ũ =

[

1 0
1/e 1

] [

e 1
0 −1/e

]

=

[

e 1
1 0

]

and

|L̃||Ũ | =

[

1 0
1/e 1

] [

e 1
0 1/e

]

=

[

e 1
1 2/e

]

.

Soγn|L̃||Ũ | allows a large error in the(2, 2) position.

30 Linear algebra package

There are downloadable linear algebra packages. One isarmadillo, and here is an example using
it.

The example is to produce a certain kind of layout for a certain kind of graph. A graph is repre-
sented abstractly as a list of (unordered) pairs.

For example, six vertices and nine edges

1,2 1,4 1,5

2,3 2,6 3,4

3,6 4,5 5,6

Drawn one way, this graph has vertices 1,2,3,4 on the outer face.
Given a layout of the outer vertices (they must form a convex polygon), the layout can be extended

barycentricallyto the other vertices, meaning that every internal vertex isthe average (centroid) of
its neighbours.

This can be expressed with matrices. The above example will be summarised in the following
input file

6 4

0 -1.5 -1

66



1 1.5 -1

2 1.5 1

3 -1.5 1

9

0 1 0 3 0 4

1 2 1 5 2 3

2 5 3 4 4 5

For the above example, the following matrix is formed4

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0

-1.0000 0 0 -1.0000 3.0000 -1.0000

0 -1.0000 -1.0000 0 -1.0000 3.0000

and used to solve two sets of equations. The first characterises thex-values, the other they-values.
The right-hand sides are (transposed)

[

−1.5 1.5 1.5 −1.5 0 0
]T

[

−1 −1 1 1 0 0
]T

Here is the code.

#include <iostream>

#include <vector>

#include <armadillo>

//Input format

//n b no.of vertices, no of boundary vertices

//boundary point: index x-value y-value (b times)

//m no. of edges

//edge: vertex from vertex to

//

//Produces coordinates for all the points and

//extra information suitable for drawing the

//graph.

//

//A nuisance job is to rearrange the vertex

//indices to put the boundary points first.

4 No it isn’t. That was an old version of the program.

67



using namespace std;

int main()

{

int n, b, m, ix, iy, count;

double x, y, scale;

vector <pair<int,int> > edge;

vector <int> perm1, perm2;

arma::imat adjacent;

arma::mat mainmat;

arma::mat inverse;

arma::colvec xvals, yvals;

arma::colvec xsol, ysol;

cin >> n >> b;

perm1 = vector<int>(n,-1);

perm2 = vector<int>(n,-1);

xvals = arma::zeros<arma::colvec>(n,1);

yvals = arma::zeros<arma::colvec>(n,1);

for (int i=0; i<b; ++i )

{

int j;

cin >> j >> x >> y;

xvals(i) = x; yvals(i) = y;

perm1[i] = j;

perm2[j] = i;

++ count;

}

count = 0;

for (int j = 0; j<n; ++j)

{

if ( perm2[j] < 0 )

{

perm2[j] = b + count;

++ count;

}

} // this will allow for rearrangement

cin >> m;

adjacent = arma::zeros<arma::imat> (n,n);

68



mainmat = arma::eye<arma::mat> (n, n);

for ( int i =0; i<m; ++i )

{

cin >> ix >> iy;

adjacent (perm2[ix], perm2[iy]) =

adjacent (perm2[iy], perm2[ix]) = 1;

// see how the matrix is rearranged

}

for ( int i=b; i<n; ++ i )

{

count = 0;

for (int j=0; j<n; ++j )

{

if ( adjacent (i,j) )

{

++ count;

mainmat (i,j) = -1;

}

}

mainmat (i,i) = count;

}

solve ( xsol, mainmat, xvals );

solve ( ysol, mainmat, yvals );

cout << n << ’ ’ << b << endl;

for (int i=0; i<n; ++i)

cout << xsol(i) << ’ ’ << ysol(i) << endl;

cout << m << endl;

for ( int i=0; i < n; ++i )

{

for ( int j=i+1; j<n; ++j )

{

if ( adjacent(i,j) )

{

cout << i << ’ ’ << j << ’ ’ << xsol(i) << ’ ’ << ysol(i) << ’ ’

<< xsol(j) << ’ ’ << ysol(j) << endl;

}

}

}

69



Figure 4: 6-vertex graph with barycentric embedding

Figure 5: Delaunay triangulation of 20 points

return 0;

}

This can be viewed in various ways. There are various graph-drawing packages such as ‘neato.’
Or if one knows postscript, one can generate a postscript file, as was done for the given example.

Figures 5 to 9 give bigger examples.

31 Various topics

31.1 Operator overloading

Just as one can have several functions of the same name, one can re-interpret operators such as
+,−,==, etcetera. For example.

#include <iostream>

using namespace std;

typedef class Vec2

{

70



Figure 6: barycentric embedding of same graph

Figure 7: Delaunay triangulation of 100 points

71



Figure 8: barycentric embedding of above graph

Figure 9: Voronoi diagram of same 100 points

72



public:

Vec2 (int, int);

int x();

int y();

void print();

Vec2 operator + ( Vec2 other );

bool operator == ( Vec2 other );

private:

int a, b;

} Vec2;

Vec2::Vec2 ( int x, int y )

{

a = x; b = y;

}

Vec2 Vec2::operator + ( Vec2 other )

{

return Vec2 ( a+other.x(), b+other.y() );

}

bool Vec2::operator == ( Vec2 other )

{

return ( a == other.x() && b == other.y() );

}

void Vec2::print()

{

cout << a << ’ ’ << b << endl;

}

int Vec2::x()

{

return a;

}

int Vec2::y()

{

return b;

}

int main()

{

Vec2 a = Vec2 (1,2), b = Vec2 (3,4), c = Vec2 (4,6), d(0,0);

73



d = a+b;

a.print();

b.print();

c.print();

d.print();

cout << (c == d) << endl;

return 0;

}

-------------------a.out

1 2

3 4

4 6

4 6

1

31.2 Reference and pointers

C++ allows forreference typeswhich are different frompointer types.

int a, *b, &c;

declaresa, b, c to be integer, pointer to integer, and reference to integer variable. The compiler
will not permit c to be declared without initialisation. It must be initialised to another variable or
array member.

Reference-type variables have been seen in routine arguments.

#include <iostream>

using namespace std;

int main()

{

int x, &y = x, z, a[3], &w = a[1];

// a and w not used: just showing

// they are accepted.

x = 14;

y = x;

z = 20;

cout << x << ’ ’ << y << ’ ’ << z << endl;

++x;

74



cout << x << ’ ’ << y << ’ ’ << z << endl;

++y;

cout << x << ’ ’ << y << ’ ’ << z << endl;

y = z;

cout << y << ’ ’ << z << ’ ’ << z << endl;

++y;

cout << y << ’ ’ << z << ’ ’ << z << endl;

return 0;

}

------------------a.out

14 14 20

15 15 20

16 16 20

20 20 20

21 20 20

31.3 Routine arguments and this

In a class object,this is theaddressof the object. Class memberx can be accessed asthis->x.
Throughthis, one can access class members whose names have been taken by routine arguments.
For example

#include <iostream>

using namespace std;

typedef class Complex

{

public:

Complex ( double x, double y );

void print();

private:

double x,y;

} Complex;

void Complex::print()

{

cout << x << " + " << y << " i\n";

}

Complex::Complex ( double x, double y )

{

75



this->x = x; this->y = y;

}

int main()

{

Complex z ( 1 , 2 );

z.print();

return 0;

}

--------------a.out

1 + 2 i

31.4 Privacy

Question.What’s the point of privacy?
Answer. The difference between a pointer-friendly language such asC with its struct-based

objects and an object-oriented language with itsclass-based objects is that the structures in C are
inert, and can be modified anywhere.

In C++ the objects are more like agents, each with its own job tocarry out. Even though they
are probably created by the same programmer, they are not allowed to interfere with each other. The
‘private’ sections of the class are something like notes which are made during performance of your
job. You rely on the notes being the notes you wrote, not tampered with. Hence the use of private
sections in class definitions.

31.5 Const

In C++const means
the item is constant,sort of

const double pi = 3.14159;

means what it says, but

void print ( const C & x )

means thatx is of typeC, passed by reference, but that the routineprint will not (knowingly)
changex. If C occupies a lot of memory, this saves time and space, using call-by-reference, and gives
the kind of protection against alteration guaranteed usingcall-by-value.

This is the most common usage ofconst.
Constants inside classes are peculiar. With the keyword ‘static,’ they must be initialised as they

would be outside classes, and without that keyword they mustbe initialised in a peculiar way illus-
trated below.

#include <iostream>

//adapted from Ellis Stroustrup p 292

76



using namespace std;

// Illustrating use of ‘this’ to free names

// for routine arguments.

typedef class B1 { public: B1(int); int x; } B1;

B1::B1(int x){this->x = x;}

// Illustrating peculiar notions of constants

typedef class D

{

public:

D(int);

const int c;

static const int x = 29;

} D;

// Constant c is not to be changed

// after constructing an object,

// but its initialisation is required

// USING ONLY THE STYLE shown

D::D(int a): c(a+4)

{ }

int main()

{

D d(10);

cout << d.c << endl << d.x << endl;

return 0;

}

32 Syllabus for May 2014 exam

Anything in the quizzes is fair game for the final exam. Also, pieces of code which occurred in
programming assignments could be asked.

• Data types:char, int, bool, double.

77



• Assignment statements, if, while, etcetera.

• Arrays. Address calculation (1 and 2-dimensional arrays).Array initialisation for tables.

• Character strings. Command-line arguments, atoi(), atof().

• Functions and routines. Call by value; how array arguments are passed; call by reference.

• Simulating functions and routines.

• Variables with the same name.

• Random numbers.RAND MAX. Non-random effects of using modular arithmetic to restrict the
range, with linear congruential generators. Better method of producing random integers in a
restricted range.

• Structures (introduced only as a prelude to classes).

• Classes. Class members. Public and private. Overloading. Operator overloading.

• Evaluating expressions: order of evaluation; mixed-type expressions; casts.

• Simulating recursive routines and functions.

• Files: ifstream, ofstream, opening a file, closing, cin, cout, eof(), getline().

• Standard template library:string, vector, set, map. Iterators used for traversing,
also infind() andsort(). Use of*it or it->... whenit is an iterator. References and
pointers.

• You should know the STL functions and operators mentioned inSection 25.

• IEEE standard: machine-epsilon for single and double-precision. Accuracy of LU factorisation
and of summation.

78


	Hello world
	Variables
	Assignment statements and arithmetic
	Compound statements and for-loops
	If-statements
	While-loops
	Arrays, input, initialisation
	Character strings
	Addresses of array elements
	Functions and routines
	Simulating routines and functions
	2-dimensional arrays
	Call by reference; also, overloading
	Variables all over the place
	Random numbers
	Coins and dice.

	Command-line arguments
	Structures
	Complicated details: please skip
	For example, matrices.
	Continuing complicated details: please skip

	Classes
	Casts and mixed arithmetic expressions
	Casts
	Expressions of mixed arithmetic type

	Class Vec3
	Code for the class member functions and routines

	Files
	Templates, constants, etcetera
	Templates
	Constants in classes

	Object-oriented programming
	Pairs
	Replacing words

	Iterators
	Sorting
	Maps

	STL: useful features
	Sorting

	Recursion
	IEEE standard
	Accuracy of summation
	Numerical accuracy
	Linear algebra package
	Various topics
	Operator overloading
	Reference and pointers
	Routine arguments and this
	Privacy
	Const

	Syllabus for May 2014 exam

