
Brief summary of C language

Colm Ó Dúnlaing

October 10, 2012

1 Simplest kind of program

#include <stdio.h>

/* essential for input/output */

/*

* Comments as shown here. Can be on several lines.

* Asterisks on left unnecessary: for a neat appearance.

* End comment with asterisk and forward slash.

* Double slash for single-line comments, C++ style: //

*/

main()

{

/* variables declared */

/* statements: i/o, arithmetic */

/* semicolons at end of each declaration and each statement */

/* indent for readability: to show program structure */

}

2 Declaring variables
Here are some examples.

char a;

int b, c;

double double_precision_variable_001;

/* variable with a long name */

double d[100];

/* array of doubles */

1

int e[10][10];

/* two-dimensional array of ints */

char * string;

/* declares an address --- advanced. */

3 Input/output
• printf(format, item, ... , item);

• Formats: %d, %s, %c, %f, %e, %g integer, string, floating, scientific, general. More about
this later.

• Special characters. \n newline (carriage return), \t tab, %% double percent means single per-
cent, \" ‘escaped’ quotes means quotes,

• \0 null character is used to mark the end of a character string.

• Input by command-line arguments

• Input by scanf(format, address, ... , address);

• scanf() returns a value, the number of items read. Useful for detecting end-of-data.

• Ctrl-D from the terminal signals end-of-data.

• Address of x is &x

• Related functions and routines: fprintf, fscanf, fgets, snprintf.

4 More about format
• ‘Field width’ can be included, such as %4d, %10s, etcetera.

• If the item is too short, it is right-justified to fit.

• A minus-sign causes left justification. It has nothing to do with the sign of numbers.

• With int items, a zero causes padding with zeroes rather than blanks. For example,

printf("%06d\n", 7)

produces

000007

• With formats %f, %e, %g, a decimal point gives precision. Thus

2

printf("%6.3f\n", 7)

produces 3 decimal places in a field width of 6:

7.000

5 For loops

for (i = low; i < too_high; ++ i)

{

<statements>

}

NOTE Right curly bracket } marks end of group of statements. There must be a semi-
colon before } (unless empty), and there should not be a semicolon immediately after.

This is one of the peculiarities of C.

The above description shows a for-loop as it is most frequently used. In full generality, a for-loop
looks like

for (<do first>; <(while) still going>; <do between reps>)

{

<statements>

}

Relation symbols

Mathematical form C form
< <

≤ <=

= ==

≥ >=

> >

6= !=

6 Constants and character strings
• Number constants are as you would expect, such as 123 or -123.456

• A character constant is enclosed in single quotes, like

3

’a’ or ’\t’ or ’\n’ or ’\0’

meaning a, tab, newline, and null character.

• A character string is a sequence of characters stored in memory. It must be terminated with a
null character. A string constant is enclosed in double quotes:

"hello\n", "123\t455\n", "\"hello\""

• Notice \": the backslash is an ‘escape’ character so the double quote is taken as a character,
not enclosing the character string.

7 Command line input
• main (int argc, char * argv [])

• argc is the number of command-line arguments, beginning the count at 0.

• argv[0] is a character string, actually the name of the program (such as a.out).

• argv[1], argv[2], ... , argv[argc - 1]

are the first, second, . . . , command-line arguments.

• Include

#include <stdlib.h>

to gain access to the functions atoi() and atof() functions.

• Each argument is a character string, and atoi() can convert it to integer, as in

n = atoi (argv[1]);

• atof() converts character strings to double.

8 Naming variables
Any mixed string of letters, digits, and underscores, not beginning with a digit, is an acceptable name.
Case sensitive: one should use lowercase letters, reserving uppercase for other things.

4

	Simplest kind of program
	Declaring variables
	Input/output
	More about format
	For loops
	Constants and character strings
	Command line input
	Naming variables

