
Mathematics 1261 (computing with C), Michaelmas 2012

Colm Ó Dúnlaing

March 31, 2014

Syllabus
Programming languages1
Computers and number systems2
Basic data types3
For-loops and printf 4
Arithmetic in different bases 5
Integer arithmetic 6
Command-line arguments (argc and *argv[])7
Assignment statements and stdlib.h8
Double-precision variables9
Floating-point numbers 10
Scanf() and input/output redirection 11
‘While’ loops 12
If-statements and conditions13
Nested if-statements and indentation14
Array initialisation 15
Day of week program16
2-dimensional arrays17
Functions and subroutines18
Simulating subroutines and functions19
Gauss-Jordan elimination20
Gaussian elimination21
C has call-by-value22
Subroutine array arguments23
Global variables24
String processing25
Pointers and arrays26
Memory allocation, casts, and strings27
Structures 28
The runtime stack and recursion29
Conversions, casts, and pointers30
Files31
Multi-file compilation 32
Scope and lifetime of variables33

1

Operator precedence34
May 2014 syllabus35

1 Programming languages

The course aims at a reasonable level of skill in C programming.
Many computer programming languages were invented in the 50s and 60s. The original idea was

— I think — that a programming language would be so close to English that non-experts could use
it.

(1.1) A computer accepts instructions in a very compact form called its machine code.A machine
program(also called a ‘binary’ or ‘executable’) is a list of instructions in machine code. In the 1970s,
with small microprocessors, it was common to write programsdirectly in machine code. Here is
an example of machine code. Nowadays, most machine-code programs have thousands of lines like
these.

Memory Machine

Address instructions------------------------------------

00000210 69 6e 5f 75 73 65 64 00 5f 5f 6c 69 62 63 5f 73

00000220 74 61 72 74 5f 6d 61 69 6e 00 47 4c 49 42 43 5f

00000230 32 2e 30 00 00 00 02 00 02 00 01 00 00 00 00 00

00000240 01 00 01 00 24 00 00 00 10 00 00 00 00 00 00 00

00000250 10 69 69 0d 00 00 02 00 56 00 00 00 00 00 00 00

00000260 d8 95 04 08 06 05 00 00 d0 95 04 08 07 01 00 00

00000270 d4 95 04 08 07 02 00 00 55 89 e5 83 ec 08 e8 61

00000280 00 00 00 e8 c8 00 00 00 e8 f3 01 00 00 c9 c3 00

00000290 ff 35 c8 95 04 08 ff 25 cc 95 04 08 00 00 00 00

000002a0 ff 25 d0 95 04 08 68 00 00 00 00 e9 e0 ff ff ff

000002b0 ff 25 d4 95 04 08 68 08 00 00 00 e9 d0 ff ff ff

000002c0 31 ed 5e 89 e1 83 e4 f0 50 54 52 68 20 84 04 08

000002d0 68 c0 83 04 08 51 56 68 84 83 04 08 e8 bf ff ff

(1.2) A kind of low-level programming language calledassembler languagewas developed to make
programming easier. It was much easier than machine code, but still very laborious. Here is an
example.

.file "prog1.c"

.section .rodata

.LC0:

.string "%d\n"

.text

.globl main

.type main, @function

2

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

movl $5, -4(%ebp)

leal -4(%ebp), %eax

incl (%eax)

movl -4(%ebp), %eax

movl %eax, 4(%esp)

movl $.LC0, (%esp)

call printf

leave

ret

.size main, .-main

.section .note.GNU-stack,"",@progbits

.ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-13)"

Assembler languages are very hard to use nowadays, probablybecause they are almost never
used. In the 60s and 70s they were easier to use.1

Next came programming languages which made programming much easier. Here are some.

• FORTRAN was suitable for scientific calculation, especiallyinvolving matrices. Since FOR-
TRAN is relatively simple, it can do its work efficiently and isstill used for numerical compu-
tation.

• COBOL is still used for commercial programming, such as payroll management. It was de-
signed in the 50s by one woman, Grace Hopper, from the US Navy.

• APL is a weird but concise language which may still have its enthusiasts. Its major advantage
was conciseness, a consideration when using slow modems butnow irrelevant. As it uses many
special symbols, it requires an APL keyboard.

• LISP was developed for artificial intelligence.

• ALGOL was a more sophisticated substitute for FORTRAN.

• SIMULA67 was the first ‘object-oriented’ language, leadingto SmallTalk, C++, Eiffel, and
Java.

• PL/1 was IBM’s language intended to combine the power of both Fortran and Cobol.

• ALGOL68 was, at the time, a very sophisticated language. At the time people found it very
difficult to implement.

1I have been told that Motorola 6800 assembler is much easier than Intel assembler, which is shown here.

3

• BASIC was probably meant for children, but became importantbecause it was easy to imple-
ment on minicomputers.

• PASCAL was a much-simplified form of ALGOL (and ALGOL68). Unlike ALGOL68, it was
easy to implement on minicomputers, which made it very popular in the 70s and 80s.

• C was introduced in the early 70s. It was possibly meant to be aform of PASCAL without
certain limitations. C programs are unmistakable in appearance, quite unlike Pascal programs,
but only at the level of programming notation.

• ADA was developed by the US military in the early 1980s, to replace several different pro-
gramming languages used in administration, numerical work, and bombs. In appearance it is
closer to Pascal than C, though with a notation different fromboth.

• C++ was developed in the 80s as an object-oriented form of C. It closely resembles C.

• EIFFEL was developed in the 80s at the same time as C++. It resembles Ada. Some respected
authorities consider Eiffel better than C++ and Java.

• JAVA was originally meant (I believe) for programming toasters, but is now a very popular
C-like variant of Eiffel (and C++), with internet applications.

• SETL, developed in the late 70s, is a little-known language for writing algorithms with a nota-
tion based on set theory.

• SNOBOL is an old language intended for processing textual data. It may have had some influ-
ence on special-purpose languages like Awk, Perl, and Python.

• FORTH is a language I never saw, but its programs are in postfixform, which has sometimes
been used on calculators.

• POSTSCRIPT is a graphics and typesetting language which also uses a postfix notation.

• TeX also provides a complete, but low-level, programming language.

(1.3) Here is a simple C program — actually, the assembler program above was derived from it.

#include <stdio.h>

/* first program example */

main()

{

int i=5;

i = i+1;

printf ("%d\n", i);

}

It is trivial, but uses enough C to be able to guess what some ofthe assembler code does.

4

• i is an integer, initialised to 5.

• Nexti is replaced byi+1, i.e., 6.

• Last,i is printed. The"%d\n" is aformat controlstring. What does\n mean?

• What is#include <stdio.h> good for?

• What is/* first program example */ good for?

Here are some examples of a program to scan a list of parentheses and say whether the list is
balanced. For example, ()(()) is balanced but ())()(() is not.

Little if any of this code has been tested; none of the obsolete languages and none of the exotic
languages. The interested student is invited to test it.

5

FORTRAN

FUNCTION BALANCED (INTEGER S [100], INTEGER SIZE)

INTEGER SURPLUS

SURPLUS=0

I=0

LOOP I=I+1

IF I.LE.SIZE GOTO NEXT

IF SURPLUS.EQ.0 RETURN TRUE

RETURN FALSE

NEXT IF S[I].EQ.RPAREN GOTO RPAR

SURPLUS=SURPLUS+1

GOTO LOOP

RPAR SURPLUS=SURPLUS-1

IF SURPLUS.GE.0 GOTO LOOP

RETURN FALSE

RPAREN EQ 1H’)’

PASCAL

function balanced (s: packed array [1..100] of char;

size: integer): boolean;

var

i, surplus: integer;

result: boolean;

begin

surplus := 0;

balanced := true;

for i := 1 to size do

begin

if s[i] = ’)’

surplus := surplus - 1;

else

surplus := surplus + 1;

if surplus < 0 then

balanced := false;

end

if surplus <> 0 then

balanced := false

end

6

C

int balanced (char s[])

{

int i, surplus;

surplus = 0;

for (i=0; s[i] != ’\0’; ++i)

if (s[i]==’(’)

++surplus;

else

{

-- surplus;

if (surplus<0)

return 0;

}

return (surplus == 0);

}

EIFFEL

balanced (s: STRING) : BOOLEAN is

local

i, surplus: INTEGER

do

from

i := 1

until

i > s.count or surplus < 0

loop

if s.item[i] = ’(’ then

surplus := surplus+1

else

surplus := surplus-1

end

i := i+1

end

Result := (surplus = 0)

end

7

LISP

define ((

(right_to_left (lambda s)

(cond ((null s) 0)

((negp (right_to_left (cdr s))) -1)

((eq (car s) ’(’) (sub1 right_to_left (cdr s)))

(T (add1 right_to_left (cdr s)))

)

)

(balanced (lambda s) (zerop (right_to_left s)))

))

APL uses a special keyboard, so we use mathematical typesetting:

A← S =′ (′−S =′)′

B ← +\A

C ← (B ≥ 0) ∧ B[ρB] = 0

2 Computers and number systems

All computer data is stored as patterns of 0s and 1s. A ‘bit’ isa binary digit, i.e., 0 or 1, or an object
which can take these values. There is a multiplicative effect, so that 8 bits combined together can
take28 = 256 different values.

A computer has several components, includingCentral memory, central processor, hard disc,
and terminal (or monitor).

Long-term data is on the hard disc; the central processor works on short-term data in the central
memory.

Here is a C program

#include <stdio.h>

main()

{

printf("Hello\n");

printf("there\n");

}

Create a filehello.c containing the above lines, then run

gcc hello.c

8

This will create a filea.out which the computer can run as a program:

a.out

will cause the message

Hello

there

to be written to the terminal.
Question: what’s the ’\n’ for?

(2.1) Although letters on the terminal look like ordinary newsprint, say, under close inspection the
letters spellingHello are just patterns of dots, something like

How are these letters stored on a computer? they could be stored as7 × 5 patterns of zeroes and
1s, where 0 means ‘no dot’ and 1 means ‘dot.’ This would require 35 bits per letter. Instead, all
characters are stored as 8-bit patterns under an internationally agreed code, the ASCII code. To learn
more, type

man ascii

ASCII code for H is 01001000, for e is 01100101, and so on. Figure 1 shows the basic compo-
nents.

Conclusions.The computer stores all data as patterns of 0s and 1s, calledbitstrings. All charac-
ters appear on the screen as patterns of dots.

Central memory, processor, hard disc.When you have edited and saved your programhello.c,
it is now stored on thehard disc. (in ASCII, of course). It isdata.

It is the processorwhich does the work of the computer. Its job is to readinstructions from
central memory and execute them. The instructions are contained inexecutable programs.

When you type

gcc hello.c

the computer copies an executable program calledgcc into central memory, then executes that pro-
gram on the data contained inhello.c. It produces a new executable program which is usually
calleda.out and stores it on disc.

When you type

a.out

the computer copiesa.out into central memory and executes it, with the results as described.

9

central
memory

hard
disc

processor

01100110110001001

01100110110001001

01100110110001001

01001000011001010110110001101100011011110000101000000000
01110100011010000110010101110010011001010000101000000000

terminal

Hello
there

Figure 1: Parts of a computer

2.1 Number systems

Our decimal number system is derived from the human hand.2 Binary numbers are much simpler.
The binary string01001000 represents

0 + 0× 2 + 0× 22 + 1× 23 + 0× 24 + 0× 25 + 1× 26 + 0× 27 = 8 + 64 = 72

(that is, 72 in decimal, of course).
It is easy to list the binary strings of length 3 in ascending order:

000, 001, 010, 011,

100, 101, 110, 111

The rightmost bit is called the ‘low-order bit.’ The ‘low order bit’ changes most often; the next bit
changes half as often; the high-order bit changes only once.

It is easy to convert a bitstring into anoctal string.Simply put it in groups of 3, starting from the
right. Thus

01001000

01 001 000

1 1 0

The ASCII code for H has octal value110. On the other hand, interpreting110 as an octal string
we get

2Or from any primate’s.

10

0 + 1× 8 + 1× 82 = 72

(again, 72 in decimal).
Question.The ASCII code for e is 01100101 as a bitstring. What is it in octal? in decimal?
Octal numbers give a compact way to represent bitstrings. Sodo hexadecimal numbers, which

are numbers to base 16. We need 16hex digitsto form hexadecimal numbers. One usesa,b,c,d,e,f
(or A,B,C,D,E,F) for the digits≥ 10. Every hex digit equals four binary digits. The hex digits
convert to octal, binary, and decimal as follows

hex octal binary decimal

0 0 0000 0

1 1 0001 1

2 2 0010 2

3 3 0011 3

4 4 0100 4

5 5 0101 5

6 6 0110 6

7 7 0111 7

8 10 1000 8

9 11 1001 9

a 12 1010 10

b 13 1011 11

c 14 1100 12

d 15 1101 13

e 16 1110 14

f 17 1111 15

11

There are procedures for addition, subtraction, multiplication, and division, in binary, octal, and
hex. Addition is easy. For example,

binary octal hex Decimal

10100011 243 a3 163

+11010101 +325 +d5 +213

---------- ---- --- ----

10 10 8 376

10 7 17

10 5 ---

1 ---- i.e

1 i.e. c3

1 243 +d5

10 +325 ---

----------- ---- 178

That is 570

10100011

+11010101

101111000

Multiplication and division in binary are quite simple. Except for trivial cases, they are always
‘long multiplication’ and ‘long division.’ We shall use binary division later, but no other hand-
calculations are of interest.

3 Basic data types

4 For-loops and printf

5 Arithmetic in different bases

6 Integer arithmetic

(6.1) 2s complement.A short integer is 4 hex digits, 16 bits, or 2 bytes long so it can represent at
most216 = 65536 different integers. We might expect it to take values0 to 65535, but instead half of
the values are negative. The range of values is from−32768 to 32767.

Notice that 43 decimal is represented as2b 00 hex. This shows that on our machines the first
byte islow-order, the second ishigh-order. It is said humorously that on Intel processors, numbers
are storedlittle-endian, meaning that the low-orderbyte(but not the low-order bit) is stored before
the high-order byte. We should preferably write it with high-order byte first:

00 2b

12

This represents2 ∗ 16 + 11 = 43, as expected.
Next,−9 is represented asf7 ff, or, high-order byte first,ff f7. Normally ff ff would

represent216 − 1 andff f7 would be216 − 9. The general rules are as follows.

• LetN = 215. (The same idea holds for long integers, except that for longintegersN = 231.)

• An integerx is in short integer rangeif

−N ≤ x ≤ N − 1.

• If −N ≤ x < N − 1, then the2s-complementform of x is
{

x if 0 ≤ x ≤ N − 1

2N + x if −N ≤ x ≤ −1

Thus a 2s-complement short integer has ‘face value’ between0000 andffff (hexadecimal) or
0 and65535 (decimal), and the signed integer it represents is in the range−32768 . . . 32767.

• If x′ andy′ are 2s-complement integers, then their 2s-complement sum is

x′ + y′ mod (2N) i.e., x′ + y′ mod 65536.

• Modular arithmetic:x mod y is the remainder on dividingx by y. For example,11 mod 4 = 3.

(6.2) Proposition Let x and y be two integers within the range of short integers, i.e.,−32768 ≤
x, y ≤ 32767. If x + y is also in this range, then 2s-complement addition will produce the correct
answer in 2s-complement form.

Partial proof. If x andy are both nonnegative, then0 ≤ x+ y < 215 and there is no carry to the
16th bit.

If x andy are both negative, andx+ y is in range, then216 > 216 + x+ y ≥ 215. But (216 + x) +
(216 + y) = 216 + (216 + x+ y). The remainder modulo216 is 216 + x+ y, and it is between215 and
216 − 1, which is correct.

Case one positive, the other nonnegative: skippped.

(6.3) Converting decimal to short.Positive numbers can be converted to hexadecimal by repeatedly
dividing by 16. For example, to convert 12345 to hex,

12345÷ 16 = 771 remainder9, i.e., 12345 = 16× 771 + 9

771÷ 16 = 48 remainder3, i.e., 771 = 16× 48 + 3

48÷ 16 = 2 remainder0, i.e., 48 = 16× 3 + 0

12345 = 16× (16× (16× 3 + 0) + 3) + 9

12345 = 163 × 3 + 162 × 0 + 16× 3 + 9

(12345)10 = (3039)16

13

To convert a negative integerx to 2s-complement, first convert|x| to hex, then subtract from
ffff, then add 1. This is the same as subtracting from216, as required.

For example, to convert−12345 to 2s-complement short integer,

(12345)10 = (3039)16

ffff − 3039 = cfc6

cfc6 + 1 = cfc7

Little endian: c7 cf

Negatives.If x is in short integer range, and so is−x, and the short integer representation ofx is
y, then−y is represented as(216 − y), whetherx is positive or negative.

The only case wherex is in range, but not−x, is x = −32768, wherey = 216 − y = 32768.

(6.4) Floating point numbers are the computerese version of high-precision decimal numbers.
They can be broken down into exponente and mantissam (both integers) and representm ∗ 2e.
Further details later.

(6.5) To disinguish between hex and decimal, we write, for example, (23)16 = (35)10.

7 Command-line arguments (argc and *argv[])

To be able to supply your program with command-line arguments, add a bit to your main() section.
First, more notation about characters and character strings.

• A single character (as opposed to a ‘string’ of characters) is represented with a single quote,
such as

’a’, ’A’, ’\n’, ’\0’

• Thenull character is represented as ’\0’, 8 zero-bits or00000000

• A characterstring is an array of characters, terminated with a null character.For example,

"hello\n"

is stored as an array ofsevencharacters, including the final null character.

• For technical reasons, a character string may be declared using a * rather than a[] notation,
e.g.,

char * x

14

#include <stdio.h>

main (int argc, char * argv[])

{

int i;

for (i=0; i<argc; ++i)

printf ("%s\n", argv[i]);

}

If one compiles this program and types

a.out a quick brown fox

the four character strings"a", "quick", "brown", and ”fox” are calledcommand-line argu-
ments.The result is

a.out

a

quick

brown

fox

Partial explanation. You can, as shown, use toargc as you would use an integer variable. It
means the number of character strings on the ‘command line,’including thea.out. The minimum
value is 1.

The variableargv is anarray of character strings. Its size is not given, butargv[i] is thei-th
command argument, valid fori between0 andargc-1.

The command-line arguments are character strings, but theycan be converted to integers, etcetera,
through another#include:

#include <stdlib.h>

If x is a character string, then

atoi (x)

is theinteger value ofx. If x does not represent an integer thenatoi(x) is just zero.
For example,

#include <stdio.h>

#include <stdlib.h>

15

main (int argc, char * argv[])

{

int dd, mm, yy;

dd = atoi (argv[1]);

mm = atoi (argv[2]);

yy = atoi (argv[3]);

printf ("Date is %02d/%02d/%02d\n", dd, mm, yy);

}

8 Assignment statements and stdlib.h

(8.1) Noteon names of variables.
Any string of letters, digits, and/or underscores, which begins with a letter or underscore, is

suitable for a variable name.
C is case sensitive, i.e., ‘a’ and ‘A’ are different. Usuallyone uses lowercase (small letters) in

variable names. Capital letters are usually reserved for other things, though the don’t have to be.

(8.2) Assignment statements usually have the form
TEMPLATE
〈 variable or array
element 〉 = 〈 value 〉
;

The value can be a constant, or it can be anarithmetic expressionformed of constants, variables,
etcetera. Thearithmetic operators are

+,−, ∗, /,%
the unusual one is% for remainder: m%n means theremainderon dividingm by n (m andn
should be integers).

The old BODMAS formula of arithmetic applies here: brackets,of, division, multiplication, ad-
dition, subtraction. It is easy to make mistakes. For example, the formula for the variance of a listxi

of n numbers is
1

n− 1

n−1
∑

i=0

(xi − x̄)2

(following the C array-indexing convention;̄x is the mean, which needs to be calculated first). In
programming this, one probably evaluates the sum first, and then the variance. Some people write

variance = sum / n-1;

This is a mistake, because it means
1

n

n−1
∑

i=0

(xi − x̄)2 − 1

16

Exercise.Correct the mistake.
Left-to-right order. Generally, where the BODMAS rule does not tell you how to evaluate,

left-to-right evaluation applies. For example,

1 + 2 + 3 = (1+2)+3 = 3+3 = 6

1 - 2 - 3 = (1-2)-3 = -1-3 = -4

1 - 2 + 3 = (1-2)+3 = -1+3 = 2

1/2/3 = (1/2)/3 = 0/3 = 0

There is no notation for powers.You can use things frommath.h to compute powers.
One can compute a power using a for-loop:

/* calculate x^n, assuming n >= 0 */

pow = 1;

for (i=0; i<n; ++i)

pow = pow * x;

Example using atoi().There is a ‘function’atoi(. . .) which converts character strings to 32-bit
integers. It needsstdlib.h. Here is an example, adding up numbers from the command line

#include <stdio.h>

#include <stdlib.h>

main(int argc, char * argv[])

{

int x, sum, i;

sum = 0;

for (i=1; i<argc; ++i)

{

x = atoi (argv [i]);

sum = sum + x;

}

printf("Total is %d\n", sum);

}

The remainder operator (also called themod or modulo operator) can be used to test whethern is
even:

if (n % 2 == 0)

and it can also be used to calculate the weekday a date falls on.

17

(8.3) Modular arithmetic . Recall that ifn andd are integers (withd positive) then there exist
unique integersq andr such that

n = qd+ r,

where 0 ≤ r ≤ d− 1 :

q is thequotientandr theremainderon division ofn by d.
Warning. In C, the quotientn/d and remaindern%d are different from the mathematical defini-

tion if n < 0: division ‘rounds towards zero’ rather than always ‘rounding down.’
Modular arithmetic respects addition and multiplication.So, if

x+ y = z

then
((x mod 9) + (y mod 9) mod 9) = (z mod 9)

Casting out the 9s.It is easy to calculate the remainder modulo 9. Just add digits and repeat until
one digit is left.

For example,
12345 7→ 1 + 2 + 3 + 4 + 5 = 15 7→ 6

In former times, this was used to check calculations: for example, if x andy are large then there
could easily be a mistake in your calculation ofxy. But you can ‘cast out the nines’ as a check on
your answer. It won’t always reveal mistakes, but it usuallydoes.

Exercise (to be discussed in lecture).Write a program converting a date to day-of-week. This is
‘casting out the sevens.’

Abbreviations.

x = x+1;

can be abbreviated

(if x is an integer, long,

or short integer)

as

x += 1;

or

++x;

or

x++;

x = x-1;

as

x -= 1;

or

--x;

or

x--;

18

x = x*y

can be abbreviated as

x *= y;

x = x/y;

can be abbreviated as

x /= y;

and probably

x = x%y;

can be abbreviated as

x %= y;

9 Double-precision variables

• ‘Doubles’ (double-precision floating point) occupy 8 bytes.

• Their exact layout will be discussed later.

• One can use arithmetic expressions with doubles. Where doubles and integers both occur in
expressions, the integers are converted to doubles.

• Output format is

%f --- %[-]w.df Default 6 decimal places.

%e --- scientific notation sure of the details

%g --- chooses whichever fits better

• Constants with a decimal point mean doubles. Thus1/2 is 0, but1.0/2 or 1/2.0 all come out
as.5. What about1/2 + 0.0?

• They can be read from the command line. Instead ofatoi(), useatof().

• Integer values can be assigned to double variables and vice-versa. When a double value is
assigned to an integer variable, the value isrounded towards zero.

10 Floating-point numbers

10.1 Binary point

Like a decimal point number, a binary point number would be a number representable in the form

±akak−1 . . . a0.b1b2 . . .

where theaj and thebj are binary digits. The number represented is

±

(

∑

2jaj +
∑

(

1

2

)j

bj

)

19

There can be infinitely many digits after the ‘binary point.’
For numerical work, binary floating-point numbers are much more useful. A binary floating-point

number is represented as
±2e × 1.b1b2 . . .

e is theexponent
m = 1.b1b2 . . . themantissa.
Note1 ≤ m < 2.

Any nonzeroreal number can be represented as a binary floating-point number.

10.2 Calculating the mantissa digits.

We are given a real numberm where1 ≤ m < 2. In ‘binary point,’

m = 1.b1b2b3 . . .

The digitsb1, b2 . . . can be calculated as follows. Letr0 = m− 1.

r0 = 0.b1b2b3 . . .

2r0 = b1.b2b3 . . .

Thenb1 is the integer part of2r0. Let r1 = 2r0 − b1:

r1 = 0.b2b3 . . .

2r1 = b2.b3 . . .

The integer part isb2. Let r2 = 2r1 − b2:

r2 = 0.b3 . . .

and so on. Summarising:

r0 = m− 1

and repeatedly

bj+1 = integer part of2rj
rj+1 = fractional part of2rj

Example. Calculate the floating binary representation of80/9. Divide by23 to get

10/9

This is between1 and2, so the exponent is3 and the mantissa is10/9.

20

j rj 2rj bj+1

0 1

9

2

9
0

1 2

9

4

9
0

2 4

9

8

9
0

3 8

9

16

9
1

4 7

9

14

9
1

5 5

9

10

9
1

6 1

9

2

9
0

This is a point of recurrence, and the pattern will repeat. Therefore

10

9
= 1.000111000111000111 . . .

It can be checked by summing a geometric series

1 +
7

64
+

7

642
. . .

= 1 +
7

64

(

∑

j≥0

1

64j

)

= 1 +
7

64

(

1

1− 1/64

)

=

1 +
7

64

64

63
=

1 + 1/9 = 10/9.

Thus the binary floating-point representation of80/9 is

23 × 1.000111000111000111 . . .

10.3 Scientific notation.

Integer arithmetic is not much use for scientific computation which needsaccuracy.Hence, single-
and double-precision floating point numbers.

Scientific notation. In scientific applications, ordinary decimal numbers are too long for conve-
nience, so a notation of the form

±〈mantissa〉E〈exponent〉
is used. For example, the number

123000000000

is more compactly represented as
1.23E + 9

21

The ‘correct’ position of the decimal point depends on the exponent; the decimal point is ‘float-
ing’; hence the term floating point. A (decimal) floating-point number isnormalisedif its mantissa is
at least 1 and less than 10.

According to the IEEE floating-point standard, a (single-precision) floating-point number occu-
pies 4 bytes. It consists ofsign, mantissa,andexponent.It is normalisedif its mantissa is at least 1
and less than 2.

• In a single-precision floating-point number, the high-order bit3 is thesign bit, 1 for negative, 0
for positive. The sign is separate, i.e., the mantissa is not2s complement.

• The exponentE is stored in the next 8 bits, ‘biased,’ not 2s complement:0016 means−127 and
ff16 means+128. In other words,E + 127 is stored in 8 bits, assuming it fits.

• Thefractional part of the mantissa is stored in the 23 low-order bits.

• Zero is an exception, represented as a string of 32 zero-bits.

Double-precision floating-point numbers occupy 8 bytes. They use the same ideas as in single-
precision, but now they have

• a sign bit

• 11 exponent bits, and

• the 52 low-order bits of the mantissa.

(10.1) Why use this representation?Because accurate calculation shouldscale up and down.
Suppose you measure the circumference of a sphere accurate to the nearest inch. Is that accurate or
not? Depends on the sphere.

Accuracy is measured as a proportion.
With floating-point numbers, there must be loss of accuracy sometimes. However, the IEEE

standard makes certainguaranteeswhich we shall callthe IEEE promise.
Example. Convert80/9 to single-precision floating-point.

• The sign bit is zero.

• The exponent is adjusted so that the mantissa is between 1 and2: 8 × (10/9). The ‘true’
exponent is 3 and the mantissa should approximate10/9. The infinite precision floating point
representation has been computed in a previous example.

Now we must continue the fractional part until it exceeds 23 bits.
.00011100011100011100011 1000111 . . .

The part after the 23rd bit is more than half the value of that bit, so rounding is upwards, —
meaning 1 is added to the 23-bit string as if it were a 23-bit face-value integer.

.00011100011100011100100
Now we can assemble the floating-point representation.

3Floating-point numbers are ‘little-endian’ on Intel processors. The high-order bit is the high-order bit of the fourth
byte. We stick to ‘big-endian’ descriptions.

22

• sign bit 0

• True exponent3, biased exponent127+3 = 130. This is10000010 in 8-bit (face-value) binary.

• The mantissa is shown above.

Hence the number in binary is

0 1000 0010 000111 000111 000111 00100 =

0100 0001 0000 1110 0011 1000 1110 0100 =

4 1 0 e 3 8 e 4

little endian: e4 38 0e 41

Example.−5/1152 = −5/(9× 128).

• Sign bit 1.

• Normalise: mantissa becomes10/9, same as before.

• Exponent:

−5/1152 = −
10/9

256

and256 = 28, so the exponent is−8.

• Add 127.

127− 8 = 119 = 64 + 32 + 16 + 4 + 2 + 1, so the exponent is represented as0111 0111.

1 0111 0111 000111 000111 000111 00100

1011 1011 1000 1110 0011 1000 1110 0100

b b 8 e 3 8 e 4

little endian: e4 38 8c bb

10.4 Double precision

The double-precision layout is, briefly,
1+11+52, bias 1023

(and little endian).
Example.−5/1152 = −5/(9× 128).

• Sign bit 1.

• Normalise: mantissa becomes10/9, same as before.

23

• Exponent:

−5/1152 = −
10/9

256

and256 = 28, so the exponent is−8.

• It is easier to compute the biased exponent directly in binary

0 1111111111
- 1000
0 1111110111

• 000111 000111 000111 000111 000111 000111 000111 000111 0001 : 11 000

Round up

000111 000111 000111 000111 000111 000111 000111 000111 0010

Putting together

1 01111110111 000111 000111 000111 000111 000111 000111 000111 000111 0010
1011111101110001110001110001110001110001110001110001110001110010
1011 1111 0111 0001 1100 0111 0001 1100

b f 7 1 c 7 1 c
0111 0001 1100 0111 0001 1100 0111 0010

7 1 c 7 1 c 7 2

Little endian 72 1c c7 71 1c c7 71 bf

11 Scanf() and input/output redirection

(11.1) The easiest way to supply a little input to your program is through command-line arguments.
Another way to get data is through thescanf procedure. Usingscanf, one can read data from

the terminal.Scanf is intended to be a kind of opposite toprintf, in the sense that whatprintf
prints below should be whatscanf expects below.

printf("m=%d\n",m);

scanf("m=%d",m); /* WARNING: THIS IS WRONG */

There is an important difference here. We have usedprintf to print arithmetic expressions and
strings. For example,

printf ("m=%d, 2*m=%d\n", m, 2*m);

24

We do not expect to ‘scan’2*m. While printf prints expressions, scanf reads variables.
More exactly,

Printf printsvaluesto the terminal.Scanf reads data from
the terminal and stores it at variables’addresses.

(11.2) Definition Given a variablex, its addressis given by the expression&x. This must be used
for the basic data typeschar, int, etcetera, though not for character strings.

Character strings are different. They are arrays, and will be studied later.
We shall usescanf to read numeric data only. It would be confusing to do more with it.
Rules for interpreting the format control string:

• ‘White space’ — blanks, tabs, and newlines, aregenerally ignored (but newlines are more
complicated).

• scanf reads input andreturns a value, namely, the number of items successfully matched.

Keep things simple. Only usescanf for reading a list of numbers from the terminal, without
any fancy formatting.

Here’s an example of scanning using a for-loop.

#include <stdio.h>

main()

{

int i, m;

int a[10];

scanf ("%d", &m); /* m = number of items,

* assumed at most 10 */

for (i=0; i<m; ++i)

scanf ("%d", & (a[i]));

printf ("%d items in array\n", m);

for (i=0; i<m; ++i)

printf ("%d ", a[i]);

printf("\n");

}

Notice that data beginsafter the command line.

% gcc scan1.c

% a.out

3

25

1

2

3

3 items in array

1 2 3

CTRL-D

%

Here’s a version which uses scanf to detect END-OF-DATA, so there is no need for the number
of items input.

#include <stdio.h>

main()

{

double val, x[1000];

int num_read;

int n;

num_read = 1;

n = 0;

while (num_read == 1)

{

num_read = scanf ("%lf", &val);

if (num_read == 1)

{

x[n] = val;

++n;

}

}

printf("n=%d\n", n);

}

26

NO NEED to be so complicated.Here’s a simpler version

#include <stdio.h>

main()

{

double val, x[1000];

int num_read;

int n;

n = 0;

while (scanf ("%lf", &val) == 1)

{

x[n] = val;

++n;

}

printf("n=%d\n", n);

}

%gcc scan2.c

%a.out

1 2

3

3 items in array

1 2 3

CTRL-D

%

END-OF-DATA is signalled by CTRL-D

Input redirection. One can prepare a file, called mydata, say, containing, say

1

2 2

and type

a.out < mydata

One gets the same results as above.
NOTE: there is no need to include CTRL-D in the file ‘mydata.’

Scanf() and doubles.Be very careful about the format when inputting doubles usingscanf().

double x;

scanf ("%f", &x);

is wrong. It would be correct for inputtingfloats. Use

27

scanf ("%lf", & x);

The ’l’ is the letter ell, and ‘lf’ means ‘long float.’ What

double x;

scanf ("%f", &x);

does is to convert the input number to a single-precision float and store it in the first (low-order) four
bytes inx. The other four bytes are left uninitialised.

12 ‘While’ loops

A while-loop is related to a for-loop. Actually, one could write every while-loop as a for-loop, but it
could be artificial. The general form is

while (<condition holds>)

<statement; or {group}>

Using a while-loop in conjunction withscanf, one can process a long list of numbers

#include <stdio.h>

#include <stdlib.h>

main()

{

int i, x, sum, count;

sum = 0;

count = 0;

while (scanf ("%d", & x) == 1)

{

sum += x;

++ count;

}

printf("Sum of %d numbers is %d\n", count, sum);

}

Sample run (the above program is ins.c)

% gcc s.c

% a.out

3 4 5

1 6

CTRL-D

Sum of 5 numbers is 19

%

28

Note how to signal end-of-data:
CTRL-D for end-of-data

(12.1) More about while-loops.For example, here is an inefficient way to compute quotient and
remainder using a while-loop.

/* piece of code: quotient and remainder dividing n by d,

* assuming d > 0

*/

q = 0; r = n;

while (r >= d)

{

q = q+1;

r = r-d;

}

Let us simulate this code withd = 13 andn = 100.

q r r>=d?

0 100 1

1 87 1

2 74 1

3 61 1

4 48 1

5 35 1

6 22 1

7 9 0

quotient 7, remainder 9.

Example. Supposem andn are integers, andm ≥ n > 0.

int x,y,z;

x = m; y = n;

while (y != 0)

{

z = x % y;

x = y;

y = z;

}

29

Try m = 165, n = 24.

x y z

165 24 21

24 21 3

21 3 0

3 0

13 If-statements and conditions

(13.1) Conditions and if-statements.An if-statement has the form (mind theINDENTATION)

if (<condition>)

<statement; or {group}>

and --- optionally ---

else

<statement; or {group}>

The condition must be in parentheses.
if (<condition>) . . .

Programming languages usually use the word ‘then.’ C doesn’t. The condition is in parentheses
and ‘then’ is understood.

Statement or group of statements?It is best practice to use curly bracketsalways,as otherwise
one gets into a mess. (If I forget to do so, remind me.)

if (x == 1)

{

printf ("hello\n");

}

else

{

printf ("goodbye\n");

}

Conditions are converted to integers. In a.out the conditionargc == 2 is tested and an
integer produced: 1 for true and 0 for false. More generally,any integer value can be used as a
condition; nonzero is treated as true and zero as false.

Complex if-statements. The basic ‘if-statement’ relations are

==, <, <=, >, >=, !=

They can be grouped into more complex statements using

30

&& for ‘and,’

|| for ‘or,’ and

! for ’not.’

For example, to test if a 4-digit year is a leap-year,

if (yy % 400 == 0 || (yy % 4 == 0 && yy % 100 != 0))

Every fourth year is a leap year, except for centuries; everyfourth century is a leap year.
More complex conditions can be constructed with

&& || !
for and, or, not. TheDOUBLE ampersand and double bar are important; single ampersand and

single bar have a different meaning.
For example, supposeyy represents a year, including the century, not just the last two digits.

According to the Gregorian calendar, a leap year is

• divisible by 4,and

• either is not divisible by 100or is divisible by 400.

Meaning that only one century in 4 is a leap-year; so on average the year is

365
397

400

days long, apparently a good approximation.
This can be expressed in C:

... int leapyear, yy;

leapyear =

yy % 4 == 0 &&

(yy % 100 != 0 || yy % 400 == 0)

;

if (leapyear)

Why the parentheses? Because I don’t remember the evaluation rules (an extension of the rules
for arithmetic operations).

31

14 Nested if-statements and indentation

There is an ambiguity whenif-statements are combined.

if (A)

if (B)

C;

else

D;

In this example, theelse can be interpreted as either being when A is true and B false, or when
A is false. The former is correct. Thus the above is equivalent to

if (A)

{

if (B)

C;

else

D;

}

and if you want the other, you must use braces

if (A)

{

if (B)

C;

}

else

D;

Frequently one applies testsA,C... in succession.

if (A)

B;

else

if (C)

D;

else

if (E)

F;

else

G;

32

If A is true, do B. If A is false and C true, do D. If A and C are falseand E is true, do F. Else do
G.

To avoid excessive indentation, I prefer not to indent in this case:

if (A)

B;

else if (C)

D;

else if (E)

F;

else

G;

15 Array initialisation

In C, it is possible to ‘initialise’ variables when they are declared.
It is not always a good idea to initialise variables in this way. It is most useful for creating

tables of data.
For example, one can create an array giving the number of daysin each month (not a leap-year)

as follows

int month_length[12]

= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

The curly bracesand the semicolonare required.
In fact, when array initialisation is used, it is not necessary to give the size of the array:

int month_length[]

= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

This is dangerous because the array size is not immediately obvious.
Similarly

char hello[] = {’H’,’e’,’l’,’l’,’o’,’\0’};

defines a character string ”Hello”. One can also write

char hello[] = "Hello";

or

char hello[6] = "Hello";

33

Again, one can define abbreviated names for the days of the week:

char * weekday[7] = {"Mon","Tue","Wed","Thu","Fri","Sat","Sun"};

This notation is like the*argv[] notation.
In class we shall write a program converting date to day of week.

16 Day of week program

#include <stdio.h>

#include <stdlib.h>

main(int argc, char *argv[])

{

int dd, mm, yy, leapyear, century_adjustment, result;

char * weekday [7] =

{"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"};

char * month[12] =

{"January","February","March","April","May","June",

"July","August","September","October","November","December"};

int month_offset[12] =

{0,3,3,6,1,4,6,2,5,0,3,5};

century_adjustment = 6; /* for 21st century */

dd = atoi (argv [1]);

mm = atoi (argv [2]);

yy = atoi (argv [3]);

/*

* ASSUMED: 0 <= yy <= 99, simplifying

* the calculations

*/

leapyear = (yy % 4 == 0);

result = dd + month_offset[mm-1] + yy + yy/4 + century_adjustment;

if (leapyear && mm <= 2)

result = result + 6;

34

result = result % 7;

printf("%s, %d %s %02d\n", weekday[result], dd,

month[mm-1], yy);

}

17 2-dimensional arrays

Matrices should be represented using 2-dimensional arrays. C allows this. The declaration should be
(for an array of doubles)

double a [3][4];

defines a3× 4 matrix.
We would think of the above array as consisting of 3 rows, eachrow containing 4 elements.

C treats a 2-dimensional arraya[3][4] as an array of 3 1-dimensional arrays, each containing 4
elements. The entire array is kept in a single block of memory(as usual,a contains the address where
the block begins).

Size of a 2-dimensional array.For example,double a[3][4]. It consists of 3 arrays each
containing 4 doubles: 3 blocks of4× 8 = 32 bytes. The size is3× 32 = 96.

Indexing. General array element is indexed asa[i][j], where0 ≤ i < (no. of rows) and
0 ≤ j < (no. of columns).

The address ofa[i][j] is

starting address of a +

i * (size of a row) +

j * (size of each entry)

=

starting address of a +

(i * (no. of columns) + j) * (size of each entry)

For example, given

double a[4][5];

Suppose a starts at address 1000. Then

a[2][3] starts at

1000 + (2 * 5 + 3) * 8

= 1104.

Generally,<name> [<rows>][<columns>]. Thewidth is the number ofcolumns,and the
heightis the number ofrows.Hence

〈name〉 [〈rows〉][〈columns〉]
〈name〉 [〈height〉][〈width〉]

35

Example. Program to read
m n a00 . . . am−1,n−1

into an array, and print it.
Printf format ‘g’ This code uses ‘g’ format rather than ‘f.’ The ‘g’ format allows scientific

notation to be used where necessary, but generally producesthe simplest output.

#include <stdio.h>

#include <stdlib.h>

main (int argc, char * argv[])

{

int i,j,m,n;

double a[10][10];

scanf("%d %d", &m, &n);

if (m > 10 || n > 10)

{

printf("%s: dimensions %d %d too large\n",

argv[0], m, n);

exit (-1);

}

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)

scanf ("%lf", &(a[i][j]));

printf("%d %d\n", m, n);

for (i=0; i<m; ++i)

{

for (j=0; j<n; ++j)

printf("%8g", a[i][j]);

printf("\n");

}

}

Multiply column vector by matrix on left. The following routine does this.

#include <stdio.h>

main()

{

double a[10][10], x[10], y[10], sum;

36

int m,n;

int i,j;

scanf("%d %d\n", &m, &n);

for (i=0; i<m; ++i)

{

for (j=0; j<n; ++j)

{

scanf("%lf", &(a[i][j]));

}

}

for (j=0; j<n; ++j)

{

scanf("%lf", &x[j]);

}

printf("Ax: ");

for (i=0; i<m; ++i)

{

sum = 0;

for (j=0; j<n; ++j)

{

sum = sum + a[i][j] * x[j];

}

y[i] = sum;

}

for (j=0; j<n; ++j)

printf(" %6g", y[j]);

printf("\n");

}

data file d:

3 3

1 2 3

4 5 6

7 8 9

3 -2 1

a.out < d:

Ax: 2 8 14

37

18 Functions and subroutines

A C program has the following general structure

#include etcetera

main (with or without command-line arguments)

{

declare all variables used (int, char, etcetera)

perform calculations

}

The calculations involve arithmetic computations, etcetera, and certainfunctions or routinessuch
asatoi(), scanf(), printf(), which make the work a lot easier. It would be almost im-
possible to write long programs without being able to write our own functions and routines.

A C program would then look like

#include etcetera

<function or routine A> (<arguments>)

{

... etcetera ...

}

<function or routine B> (arguments)

{

... etcetera ...

}

...etcetera...

main (with or without command-line arguments)

{

declare all variables used (int, char, etcetera)

perform calculations

}

Now the calculations inmain() can use the functions and routines. For example, we can writea
function which calculates thegcd of two numbers. It has twoarguments, resembling the arguments
to main().

38

int gcd (int n, int m)

{

int x,y,z;

x = n;

y = m;

while (y > 0)

{

z = x % y;

x = y;

y = z;

}

return x;

}

This is afunctionwith two integerargumentswhich returns an integervalue.

#include <stdio.h>

int gcd (etcetera)

{ as above }

main ()

{

int n,m,g;

while (scanf ("%d %d", &n, &m) == 2)

{

g = gcd (n, m);

printf ("gcd (%d, %d) is %d\n", n, m, g);

}

}

Sample session:

% gcc g.c
% a.out
1 2
gcd (1, 2) is 1
1001 1261
gcd (1001, 1261) is 13
1261 1001
gcd (1261, 1001) is 13
64 192

39

gcd (64, 192) is 64
CTRL-D
%

• This gcd function seems to be written the same way asmain().

It is, except for thatint at the beginning, and it includes areturn statement which returns
the value ofx.

• Why doesn’tmain() haveint or something in front of it?

It should. In the old days it didn’t: I’m breaking some convention. Leaving it out doesn’t seem
to do any harm.

• Scanf() returns a value, the number of items read. Does that meanscanf() is a function?

Yes.

• What aboutprintf()? Does it return a value?

No, printf is aroutine,not a function.

Here is another example of a function:

int is_leap_year (int yy)

{

if (yy % 4 != 0)

return 0;

else if (yy % 100 != 0)

return 1;

else if (yy % 400 != 0)

return 0;

else

return 1;

}

So we come to routines. The only difference between routinesand functions is that a routine
begins with the keywordvoid. This indicates that nothing is returned. For example,speak() is a
routine:

#include <stdio.h>

void speak (int hello)

{

40

if (hello != 0)

printf ("hello\n");

else

printf ("goodbye\n");

}

main()

{

speak (1);

speak (0);

}

A last example illustratesrecursion, where a routine calls itself.How it works will be explained
later.

int factorial (int n)

{

if (n == 0)

return 1;

else

return n * factorial (n-1);

}

Three more questions.

• Can onewrite a function inside another? The answer is ‘yes,’ but it is unnecessary.

• Can oneusea function or routine A in some other one B, not justmain()? Answer: yes, so
long as A appears before B in the program.

• What if A is written after B? One can include afunction prototypefor A, before B.

A function prototype is just a function definition with the body (the part between curly braces)
replaced by a semicolon.

int A (int n);

void B ()

{

int x;

x = A (5);

....

}

main()

41

{

B();

}

TEMPLATE for a function or routine
In routines,<type> is void

In functions, the calculations include
return statements

<type> <name> (<arguments>)
{

<variables>;
<calculations>;

}

19 Simulating subroutines and functions

Simple routines are easiest to understand by tracing (i.e.,simulating) their action on a simple piece of
data. One makes a table giving the values of all variables, one column for each variable, and enters
values in the order in which they are produced by the program.For example, trace the following
program and say what the routine does in general.

#include <stdio.h>

int xxx (int n)

{

int i,x;

x = 1;

for (i=0; i<n; ++i)

{

x = x + x;

}

return x;

}

main()

{

printf("xxx(5)==%d\n", xxx(5));

}

Simulation:

42

i x n
5

1
0

2
1

4
2

8
3

16
4

32
5
returns 32

Prints
xxx(5)==32

Clearly the function returns2n. Another example

#include <stdio.h>

int yyy (int n)

{

int i, x, s;

s = 0;

x = 1;

for (i=0; i<n; ++i)

{

s = s+x;

x = x+2;

}

return s;

}

main()

{

printf("yyy(5)==%d\n", yyy(5));

}

i x s n
5

0
1

0
1

43

3
1

4
5

2
9

7
3

16
9

4
25

11
5

returns 25
prints
yyy(5)== 25

‘Clearly’ the function returnsn2. (Summing the odd integers produces the perfect squares.)

20 Gauss-Jordan elimination

This is not examinable.Gauss-Jordan elimination applies operationsswap, scale, subtract
to the rows of an array to bring it into so-calledreduced row-echelon form.If the matrix is an aug-
mented matrix representing a system of linear equations, the set of all solutions can be derived from
the reduced matrix. If the matrix is ann× 2n matrix consisting of ann×n matrixA followed by the
n× n identity matrix: schematically

A||I

then ifA is invertible, the reduced matrix will be

I||A−1.

If, in the reduced matrix, the left-hand side of the bottom row is zero, thenA is not invertible.

#include <stdio.h>

void swap(int i, int k, double a[][20])

{

double x;

int j;

for (j=0; j<20; ++j)

{

44

x = a[i][j];

a[i][j] = a[k][j];

a[k][j] = x;

}

}

void scale (int k, double a[][20], double c)

{

int j;

double x;

for (j=0; j<20; ++j)

a[k][j] = c * a[k][j];

}

void subtract_multiple (int k, double a[][20], double c, int i)

{

int j;

double x;

for (j=0; j<20; ++j)

a[i][j] = a[i][j] - c * a[k][j];

}

void reduce (int m, int n, double a[][20])

{

int i,j,k,r;

k = 0;

for (j=0; j<n; j = j+1)

{

r = -1;

for (i=k; i<m && r<0; ++i)

if (a[i][j] != 0)

r = i;

if (r >= 0)

{

swap (k, r, a);

scale (k, a, 1/a[k][j]);

for (i=0; i<m; ++i)

if (i != k)

subtract_multiple(k, a, a[i][j], i);

++k;

}

45

}

}

main()

{

int i,j,m,n;

double a[10][20];

scanf("%d %d", &m, &n);

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)

scanf("%lf", &(a[i][j]));

reduce (m,n,a);

printf("Reduced matrix\n");

printf("%d %d\n", m, n);

for (i=0; i<m; ++i)

{

for (j=0; j<n; ++j)

printf(" %8.5g", a[i][j]);

printf("\n");

}

}

Sample input

3 6

1 2 3 1 0 0

2 3 1 0 1 0

1 1 -1 0 0 1

Reduced matrix

3 6

1 0 0 4 -5 7

-0 1 0 -3 4 -5

0 0 1 1 -1 1

Another input (matrix not invertible)

3 6

1 2 3 1 0 0

4 5 6 0 1 0

46

7 8 9 0 0 1

Reduced matrix

3 6

1 0 -1 0 -2.6667 1.6667

-0 1 2 0 2.3333 -1.3333

0 0 0 1 -2 1

21 Gaussian elimination

We are introducing Gaussian elimination with partial pivot ing for the sake of variety — as an
alternative to Gauss-Jordan elimination.

The idea is to illustrate how one writes linear algebra code inC.
Specialists in numerical linear algebra do not favour Gauss-Jordan elimination.
The difference between the two procedures is as follows.

• Gauss-Jordan elimination applies to matrices of any size, bringing them to reduced row-echelon
form.

• When applied to the augmented matrix for a set ofn independent linear equations, Gauss-
Jordan elimination reduces the augmented matrix fully, leaving the identity matrix on the left
and the solution in the rightmost column. Schematically,

A||B 7→ I||X.

whereX = A−1B.

• In Gauss-Jordan elimination, the rows are scaled so the diagonal elements are 1.

• Gaussian elimination, applied to the augmented matrix for asystem ofn independent equations,
brings the firstn columns into upper triangular form. Schematically

A||B 7→ U ||Y

and the solutionX = A−1B = U−1Y is calculated byback substitution.

• Gaussian elimination has a policy ofpartial pivotingwhich swaps the rows around to improve
accuracy.

The idea is keep fairly large numbers (large in absolute value) on the diagonal, to avoid inflating
errors by dividing by small numbers.

• In Gaussian elimination, the diagonal elements are not scaled.

Thus, Gauss-Jordan elimination would reduce
[

3 6 9
2 5 8

]

47

to
[

1 0 −1
0 1 2

]

,

Gaussian elimination would produce
[

3 6 9
0 1 2

]

The answer is not stored in the rightmost column, but can be calculated byback substitution. That is,

y = 2 from bottom row

3x+ 12 = 9, x = −3/3 = −1

With Gaussian elimination, the diagonal entries are not scaled to make them1. Partial pivoting
means ensuring that the diagonal entries are as large as possible in absolute value.

For example,
[

1 2 3
2 5 8

]

Since2 > 1, the rows are swapped.
[

2 5 8
1 2 3

]

and we finish with
[

2 5 8
0 −1/2 −1

]

Here is another example. SolveAX = B, where

A =





1 2 3
4 5 6
7 8 10



 andB is





2
5
9



 .

1 2 3 2 pivot

4 5 6 5

7 8 10 9

7 8 10 9 clear column

4 5 6 5

1 2 3 2

7 8 10 9

0 3/7 2/7 -1/7 pivot

0 6/7 11/7 5/7

7 8 10 9

0 6/7 11/7 5/7

48

0 3/7 2/7 -1/7

7 8 10 9

0 6/7 11/7 5/7

0 0 -1/2 -1/2

back substitution

z = 1

6y/7 + 11/7 = 5/7

y = -1

7x - 8 + 10 = 9

x = 1

You will be asked to apply back-substitution in the next programming assignment. That is, you
will be writing a routine

void back_sub (int n, double u[10][10], double y[10], double x[10])

{ ... }

whereu is upper triangular and you solveux = y.
The formula is applied fori = n − 1, . . . , 0, in descending order. Sinceu is upper triangular,

uij = 0 if j < i, so
n−1
∑

j=0

uijxj = bi

becomes
n−1
∑

j=i

uijxj = bi

or, in other words,

xi =
bi −

∑n−1

j=i+1
uijxj

uii

22 C has call-by-value

Consider

#include <stdio.h>

void print (int n)

{

printf("Integer... %d\n", n);

++n;

printf("Integer... %d\n", n);

}

49

main()

{

int m = 3;

print(m);

print(m);

}

the routine argumentn is like aninitialised local variable.Compiling and running the program:

%gcc p.c
%a.out
Integer... 3
Integer... 4
Integer... 3
Integer... 4
%

That is, the value ofm is copied ton, andn is local to the routine. The change ton (local) does
not affectm (in the calling routinemain). If we change themain() routine to

main()

{

print (3);

print (3);

}

we get the same output.
There are 5 recognised ways of argument-passing (parameter-passing)

• Call by value

• Call by reference

• Call by result

• Call by value-result

• Call by name

The last three are irrelevant to us: the last is bizarre, occurring in the 1960s language Algol and
in the ‘funarg problem’ in Lisp.

Actually, the#define feature in C, which shouldnever be used except to give names to con-
stants, if used with arguments has all the difficulties of call-by-name.

In call-by-reference, the subroutine argument is identical with the argument passed, i.e., occupies
the same memory location. This was the natural way when Fortran was invented, and in the early
compilers it had very odd effects.

Call-by-reference is easily simulated in C using pointers. We shall revise the program to simulate
call-by-reference.

50

#include <stdio.h>

void print (int * n)

{

printf("Integer... %d\n", * n);

++ (* n);

printf("Integer... %d\n", * n);

}

main()

{

int m = 3;

print(&m);

print(&m);

}

Running it,

%a.out
Integer... 3
Integer... 4
Integer... 4
Integer... 5
%

In most (or all?) languages, the constant 3 would be stored ina memory location when the
programa.out was loaded into central memory, and whenever 3 was used in theprogram, the value
would be taken from this location. In some early Fortran compilers, the following could happen —
illustrated as if it would happen in C, that is, if C hadcall-by-reference:

#include <stdio.h>

void print (int n)

{

printf("Integer... %d\n", n);

++n;

printf("Integer... %d\n", n);

}

main()

{

print(3);

print(3);

}

51

%a.out
Integer... 3
Integer... 4
Integer... 4
Integer... 5
%

The programming language PL/I had a mixture of call-by-reference together with ‘automatic
conversion’ which made odd things happen. If you weren’t very careful, subroutine calls would be
call-by-reference sometimes and call-by-value other times.

Summarising

C has call-by-value. Subroutine arguments are initialisedlo-
cal variables.

Exercise. gcccompiles the following program, but with warnings.

#include <stdio.h>

void print (int * n)

{

printf("Integer... %d\n", * n);

++ (* n);

printf("Integer... %d\n", * n);

}

main()

{

print(3);

print(3);

}

Run it, and try to explain what happens.

23 Subroutine array arguments

An array can be passed to a subroutine or function without declaring its size.

void negative (int x[], int count)

{

int i;

for (i=0; i<count; ++i)

x[i] = - x[i];

}

52

main()

{

int a[3] = {1,2,3};

int i;

negative (a, 3);

for (i=0; i<3; ++i)

printf(" %d", a[i]);

printf("\n");

}

• It is necessary to passcount to the routine, since the size of the array is not otherwise avail-
able.

• The value ofa is passed to the routine.

• This value is the starting address of arraya.

• Therefore, in the routine, the value ofx is where is where the arraya begins.

• x[i] is the integer storedi (integer) places beyond the start of arraya.

• In other words, every reference tox[i] in the routine actually refers toa[i].

In other words:

Array arguments are effectively call-by-reference.

Remarks.

• This is very economical, since it avoids copying large arrays.

• The argumentx can also be defined simply as a pointer:

void negative (int * x, int count)

would work just as well, and is common practice.

• Usually a subroutine argument of typechar * is intended for character strings:

void reverse_string (char * s)

Count is not needed, because end-of-string is marked by’\0’.

53

24 Global variables

Data is normally passed to subroutines and functions by passing arguments. Sometimes it is cleaner
to useglobal variables,which are ‘visible’ to routines and functions.

#include <stdio.h>

#include <stdlib.h>

double a[10][10], x[10], y[10];

int matvecprod (int m, int n)

{ ... }

main()

{ ... }

Becausea,x,y have been declared above the routinesmatvecprod() andmain(), they are
‘visible’ to both and it is not necessary to pass them as arguments. The same was not done withm,
n; it could have been.

This is an example ofglobal variables. The variables declared within the routines arelocal to
those routines. They cannot be seen or modified from outside these routines. This is true also for the
main() routine.

Data may be communicated throughglobal variables.

#include

char * day[7] = {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};

int aaa (...)

{ int n=0; ... }

...

main (...)

{ int n=1; ... }

• Bothaaa andmain can use the arrayday[]; it is called aglobal variable.

• The variablesn in aaa andmain arelocal variables,and are independent of each other.

• This gives 3 kinds of variable.

• global,

• local, and

54

• routine argument.

• A local variable can be initialised as shown. It is initialised each time the routine is called: once
for main, perhaps often foraaa.

• The global variableday[] is initialised once, of course.

The global variables arestatic, meaning that they ‘last’ as long as the program is running. The
local variables ‘last’ as long as the routine is running. Whenthe routine ends, their value is lost, and
if the routine begins again, the variables are new, whether or not they are initialised.

This will be explained fully later.

There is another possibility. It is possible for a routine variable to be declared ‘static.’

void aaa (...)
{

static int x = 0;
}

The variablex doeslast throughout the program. It is initialised to 0. It has the lifetimeof a global
variable and thescopeof a local variable, meaning that it is invisible outside theroutineaaa.

Summary

Scope Lifetime Initialised how often?

local private to routine lasts for a single run of
the routine

initialised (if at all) at
start of every run of
the routine

global accessible from all
routines

lasts for entire run of
the program

initialised once

routine argument private to routine single run start of every run

static local
variable

private to routine lasts entire program intialised once

25 String processing

Whenchar * is used as a type, character strings are almost always intended, that is, arrays in which
’\0’ indicates end of string.

Here are some useful functions.

• int strlen (char * s) in string.h returns the length ofs

• int strcomp (char * x, char * y) compares two strings. It is used to sort lines of text. It
behaves in the following peculiar way.

• If x comes beforey in lexicographical (dictionary) order, thenstrcomp() returns a
negative number. Almost any negative number is possible.

55

• If x andy are equal as strings (they have the same length), thenstrcmp() returns 0.

• If x comes aftery in lexicographical (dictionary) order, thenstrcomp() returns a posi-
tive number. Almost any positive number is possible.

Mnemonic: it is as ifstrcmp() returnsx− y.

This is also instring.h

• char * fgets (char * buffer, int len, FILE * file) reads up to end-of-line (including’\n’),
or end-of-data, or up tolen characters ended with’\0’, whichever comes first.

This prevents characters being stored beyond the end of the buffer (‘buffer overflow’).

This is instdio.h.

• snprintf (char * buffer, int len, char * format, item . . .) formats the items for printing like
printf(), but formats them into the stringbuffer rather than printing to terminal.

Again,len is there to prevent buffer overflow.

This is instdio.h.

When processing text, the following routine is helpful without being absolutely necessary. It re-
moves the newline from a string.

This is useful becausefgets() usually includes newlines, but not always. It’s best to makesure
all newlines are deleted.

#include <string.h>

void delete_newline (char * s)

{

int last = strlen (s) - 1;

/* last character before ’\0’ */

if (last >= 0 && s[last] == ’\n’)

s[last] = ’\0’;

}

Here is another method, which produces the same result so long as the newline can only be at the
end of the string.

void delete_newline (char * s)

{

int i;

for (i=0; s[i] != ’\0’; ++i)

{

if (s[i] == ’\n’)

{

s[i] = ’\0’;

56

return;

}

}

}

Here is a long, almost useful, example. It reads lines of text, breaking them into words (nonblank
strings separated by blanks).

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

/* ctype.h: for isspace(), etcetera */

void del_nl (char * s)

{

/*

* delete newline

*/

int i;

for (i=0; s[i] != ’\0’; ++i)

{

if (s[i] == ’\n’)

{

s[i] = ’\0’;

return;

}

}

}

57

The processing is done withinmain(). First, here is anoutlineof whatmain() does; parts are
left out, with comments to explain them.

main()

{

/*

* get max_len off the command line

*/

max_len = atoi (argv[1]);

(25.1) The outermost while-loop controls reading of text.

while (fgets(buffer, 200, stdin) != NULL)

{

i = 0;

(25.2) The next-outermost loop controls reading of the buffer. Variablei will index the beginning of
words,

while (buffer[i] != ’\0’)

{

/*

* increment i until a non-space character is

* found, or end-of-string

*/

/*

* if not end-of-string, then

* another word begins at i

*/

(25.3) The if-statement below controls processing of the next wordin the buffer.

if (buffer[i] != ’\0’)

{

/*

* copy word to word buffer. Stops when j

* is at a blank or end-of-string

*/

while (buffer[j] != ’\0’ && ! isspace (buffer[j]))

{

}

/*

* Calculate the potential output line length

58

* if the word is printed on same line

*/

/*

* If not too long, print word on same line,

* else start a new line. No provision is

* made for breaking long words, so lines

* longer than max_len are still possible.

*/

}

This ends the part controlled by the if-statement introduced in §25.3.

} /* look for next word */

This ends the part controlled by the while-loop introduced in §25.2.

} /* read next line */

/* print an extra newline */

printf("\n");

}

This ends the outermost while-loop (§25.1) and the main routine. That is an outline of the main
program: the actual main program is below.

main(int argc, char * argv[])

{

char buffer[200], word_buffer[200];

int i,j,k, max_len, line_len, word_len, new_len;

/*

* get max_len off the command line

*/

max_len = atoi (argv[1]);

/*

* process text line-by-line

*/

line_len = 0;

while (fgets(buffer, 200, stdin) != NULL)

{

del_nl (buffer);

i = 0;

59

while (buffer[i] != ’\0’)

{

/*

* increment i until a non-space character is

* found, or end-of-string

*/

while (isspace (buffer[i]))

{

++i;

}

/*

* if not end-of-string, then

* another word begins at i

*/

if (buffer[i] != ’\0’)

{

word_len = 0;

j = i;

k = 0;

/*

* copy word to word buffer. Stops when j

* is at a blank or end-of-string.

*/

while (buffer[j] != ’\0’ && ! isspace (buffer[j]))

{

word_buffer[k] = buffer[j];

++j;

++k;

}

/*

* k is the number of non-blanks transferred.

*/

word_buffer[k] = ’\0’;

word_len = k;

if (line_len == 0)

new_len = word_len;

else

60

new_len = line_len + word_len + 1;

if (new_len <= max_len)

{

if (line_len == 0)

printf("%s", word_buffer);

else

printf(" %s", word_buffer);

line_len = new_len;

i = j;

}

else

{

printf("\n%s", word_buffer);

line_len = word_len;

/*

* The word printed was in buffer[i..j-1].

* Therefore the next word, if any,

* begins somewhere after j.

*/

i = j;

}

}

} /* search from i for another word ... */

} /* read the next line */

printf("\n"); /* add a final newline */

}

Sample run:

file tt:

We know that you highly esteem the kind of Learning taught in those

Colleges, and that the Maintenance of our young Men, while with

etcetera

%a.out 25 < tt

We know that you highly

esteem the kind of

Learning taught in those

Colleges, and that the

Maintenance of our young

Men, while with etcetera

%

61

26 Pointers and arrays

• C haspointers. A variable can contain the address of some piece of data: rather than containing
data, it‘points’ to the data.

• To declare a pointer, use *:

int * a, b, * c;

definesa andc to be of typepointer toint, andb to be of typeint as usual.

• Notice that each * appliesonly to onevariable, even in a list of variables.

• Whenx is a pointer variable of typedouble, for example, then

* x

is the value of the double-precision number whose address isin x.

• C has a very odd convention:
arrays are pointers

and
array indexing can be used with pointers

• In other words, ifa is defined as an array, saydouble a[15], gcc reserves a block of
memory (15× 8 bytes) to hold the array, and itsstarting addressis stored ina.

• On the other hand, ifb is declared as a pointer, saydouble * b, thenb can be treated as an
array, but it could be in a random piece of memory: no memory isreserved.

• Usually,

char * a

is used whena is a character string.

Example.

char * argv[]

declaresargv to be an array of character strings.

argv[1][2]

would be the 3rd character (count begins at 0) ofargv[1].
Again, in

62

int a[10], *b, c[9]

thevaluesof a,b,c will be addresses of integers.But storage will be reserved fora,c; while
b[14] is accepted by C, it refers to some random piece of memory.

Also, C does not remember array bounds:a[14] is accepted, though it is outside the area re-
served fora.

Summary.

• Use asterisks when declaring pointers

int a[12], b, *c, d[15], *e, f, *g;

a an integer array

b an integer

c pointer to integer

d an integer array

e pointer to integer

f integer

g pointer to integer

• In the above examples,a, c, d, e, andg are all pointers Onlya andd have memory reserved for
them. You can assign an array or a pointer to a pointer,

c = a;

g = c;

but you cannot assign anything to an array

a = d;

is impossible.

• Use an asterisk to get the value stored at an address:

*e is the value stored at e

*a is the value stored at a. It is the same as a[0].

• Pointers are used to implement ‘call by reference.’ See below.

• NULL (declared instdio.h) is the ‘null pointer value.’ For example, it is returned by
fgets() when end-of-data has been reached.

• When an argument is a pointer, you pass it an address, such as in

scanf("%d %d", &m, &n);

• Remember that under the rules of C, array arguments are effectively ‘call by reference.’

Using pointers for call-by-reference.

63

#include <stdio.h>

#include <ctype.h>

void count_alpha_numeric (char * s, int * alpha, int * digits)

{

int i;

* alpha = * digits = 0;

for (i=0; s[i] != ’\0’; ++i)

{

if (isdigit (s[i]))

++ * digits;

else if (isalpha (s[i]))

* alpha = * alpha + 1;

}

}

main()

{

int a, d;

char s[] = "0a1b2___cdea ";

count_alpha_numeric (s, &a, &d);

printf("%d alphabetic, %d digits\n", a, d);

}

27 Memory allocation, casts, and strings

There are 3 functions (usestlib.h) we can use for getting areas of storage:

• malloc (), free () not covered in these lectures.

• calloc (int n, int s) reservesn × s bytes of memory,initialises them to 0, and
returns the address where they start.

There is a built-in function (sort of function)sizeof (type)which returns the number of bytes of
storage occupied by an object of the given type.

To castan expression is to convert it to another type. This is done with pointers to make types
match. Acast is a type description in parentheses.

For example,(double) 22 converts the integer expression to a double. More about thislater.

64

Suppose you want an array ofn doubles. Here is a function which does this.

double * array (int n)

{

double * a;

a = (double *) calloc (n, sizeof (double));

return a;

}

• calloc(int n, int s) obtains a block ofn ∗ s bytes of free storage,

• initialised to all zeroes,

• and returns the address of the block.

• The type returned by thecalloc() function is the most general pointer type possible:void

*.

• Hence, to satisfy the rules of C, it is necessary to ‘cast’ it tothe correct array type.

(27.1) Recall the 4 string-handling routines already mentioned

#include <string.h>

int strlen (char * str)

void snprintf(<buffer>,<size>,<format>,<item>,...,<item>)

int strcmp (char * a, char * b)

int strncmp (char * a, char * b, char * len)

/* compares up to len characters */

Here is a program which copies strings to an array and prints them in reverse order.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void decr (char * str)

{

int len = strlen (str);

if (len > 0 && str[len-1] == ’\n’)

str [len-1] = ’\0’;

}

/*

* copy_string allocates storage for a copy

* of the string, uses snprintf() to copy

* the string to that storage, and returns

65

* the copy.

*/

char * copy_string (char * x)

{

int len = strlen (x);

char * copy;

copy = (char *) calloc (1, len+1);

snprintf (copy, len+1, "%s", x);

return copy;

}

main()

{

char * line[1000];

int count,i;

char buffer[200];

count = 0;

while (count < 1000 && fgets (buffer, 200, stdin) != NULL)

{

decr (buffer);

line[count] = copy_string (buffer);

++count;

}

/* print in reverse order */

for (i=count-1; i>=0; --i)

printf ("%s\n", line[i]);

}

27.1 2-dimensional arrays

We have created 1-dimensional arrays with no difficulty. Two-dimensional arrays are a lot more
tricky.

double a[10][10];

is a typical 2-dimensional array definition. How can we use pointers to produce arrays of flexible
sizes? First of all the type must describe an array of arrays of doubles. Translating ‘array’ into
‘pointer’ we see that the appropriate type isdouble * *

double ** c;

66

Can we createc like this?

c = (double * *) calloc (m, n * sizeof (double));

No. Suppose thatm = n = 10 and c is allocated 100 doubles beginning at address 40, say. Then

c = 40

c[0] = 0

c[0][0] = ???

What we must do is create 10 separate arrays of size 10, and makec into an array of 10 pointers,
giving the start of each 1-dimensional array.

Here is one way to do it.

c = (double * *) calloc (10, sizeof (double *));

c[0] = (double *) calloc (10, sizeof (double *));

c[1] = (double *) calloc (10, sizeof (double *));

etcetera

Then c is an array of ‘rows,’ and each row is an array

of 10 doubles. So for 0 <= i,j < 10,

c[i][j]

is the j-th entry in the i-th row of c.

These ideas lead to a matrix creation function

double * * mat (int m, int n)

{

int i;

double * * mt;

mt = (double * *) calloc (m, sizeof (double *));

for (i=0; i<m; ++i)

{

mt[i] = (double *) calloc (n, sizeof (double));

}

}

In practical terms, memory allocation is a bit expensive in time and in space. Here is another
version of the same function, more efficient because it uses2 callocs(), notm+ 1.

double * * mat (int m, int n)

{

67

int i;

double * * mt;

double * pool;

mt = (double * *) calloc (m, sizeof (double *));

pool = (double *) calloc (m*n, sizeof (double));

for (i=0; i<m; ++i)

{

mt[i] = & (pool [i * n]);

}

}

28 Structures

28.1 Structures

It is possible to collect data into packages, called ‘structures.’ For example, the following declaration
would be intended for complex numbers

struct {double re, im;} z;

The variablez would be stored in 16 bytes, and its two components — which aredouble-precision
numbers — would be referred to as

z.re

z.im

respectively. This ‘struct{etcetera}’ is a new kind oftype. Usually, one introduces the type via
typedef:

typedef struct { double re, im; }

COMPLEX;

COMPLEX x;

Note: the components of astruct are usually calledfields.

28.2 Equality, assignment, routine arguments

A structure is a kind of generalised array, in that it has different elements, not too many, each with a
different name. The C convention in which arrays are just pointers does not extend to structures.

68

void add (COMPLEX a, COMPLEX b, COMPLEX * c)

{

...

}

...

COMPLEX a,b;

a.re = a.im = 0;

b = a;

If ‘add’ is to add a and b and return the result in c, cmustbe a pointer. It is optional whether a
and b are pointers: here they aren’t.

Best practice. There is no virtue in ‘call by value’ structure arguments; itis best to use pointer
arguments.

Allocating structures. Thesizeof pseudo-function can be used.

COMPLEX * z;

z = (COMPLEX *) calloc (1, sizeof (COMPLEX));

Why should∗ be needed then not needed? Think about it. Suppose that theCOMPLEX structure
has size 16 (which is almost certainly true). This says: allocate 16 bytes, and return theaddress—
so the cast converts to ‘pointer to COMPLEX’ butsizeofreturns the size of a COMPLEX object, 16,
not the size of a pointer, which is 4 or 8.

28.3 Matrices

Interlude. Pointer notation. If x if of type STR * whereSTR is a structure, then to access fieldn,
say, in the object addressed byx, the basic notation is

(*x).n

but an alternative form is preferred:

x->n

These forms are equivalent and interchangeable.
Here is a structure for matrices.

typedef { int height, width; double ** entry;}

MATRIX;

The first thing is to write a routine to create a matrix

69

MATRIX * zero_matrix (int m, int n)

{

MATRIX * mat = calloc (1, sizeof (MATRIX));

mat->height = m;

mat->width = n;

... create the matrix entries as described earlier ...

... using calloc, all entries are initialised to 0 ...

return mat;

}

The routine returns apointer. In C, originally at least, structures could not be returned byfunc-
tions.

Here is a routine to read a matrix from standard input. It creates and returns the matrix (pointer).

MATRIX * read_matrix ()

{

int m, n, i, j;

MATRIX * mat;

scanf ("%d %d", &m, &n);

mat = zero_matrix (m, n);

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)

{

scanf ("%lf", & (mat[i][j]));

}

return mat;

}

We need a routine to read an ‘augmented matrix’, storing the last column in a vector.

void read_aug_matrix (MATRIX **a, VECTOR **b)

{

int m, n, i, j;

MATRIX * mat;

VECTOR * vec;

double x;

scanf ("%d %d", &m, &n);

mat = zero_matrix (m, n-1);

70

vec = zero_vecctor (m);

for (i=0; i<m; ++i)

for (j=0; j<n; ++j)

{

scanf ("%lf", & (x));

if (j < n-1)

mat->entry[i][j] = x;

else

vec->entry[i] = x;

}

*a = mat;

*b = vec;

}

29 The runtime stack and recursion

There are four kinds of variable:local, routine argument, static,andglobal.
The local variables and routine arguments are stored on theruntime stack.When a routine (or

function) xxx begins, astack frameis created to contain all the local data (including the routine
arguments) for the routine.

Roughly speaking, this area of memory is called a ‘stack’ because it can grow and shrink.
For example

main begins:

main calls a

main ‘suspends operation’

a begins with a new frame ‘pushed’ onto the stack.

...

a calls b:

a suspends operation

b begins with a new stack frame.

.....

b ends

a resumes....

a ends

main resumes.. etcetera

For example.

71

int gcd (int m, int n)

{

if (n == 0)

return m;

else

return gcd (n, m % n);

}

main()

{

printf("gcd(276,42)=%d\n", gcd(276,42));

}

The ‘staggered’ layout below is to emphasise the rôle of the runtime stack; there are several
different versions ofm andn.

Our indenting policy is: the actions of a particular run of a routine are headed by ‘call . . . ’ and
terminated by ‘. . . returns’ or ‘. . . returns value.’ Between these lines they are indented a few columns.

main

calls gcd(276,42)

gcd

| m 276 n 42

| calls gcd(42,24)

| gcd

| | m 42 n 24

| | calls gcd(24,18)

| | gcd

| | | m 24 n 18

| | | calls gcd(18,6)

| | | gcd

| | | | m 18 n 6

| | | | calls gcd(6,0)

| | | | gcd

| | | | m 6 n 0

| | | | gcd returns 6

| | | gcd returns 6

| | gcd returns 6

| gcd returns 6

gcd returns 6

main prints:

gcd(276,42)=6.

72

Here is the ‘factorial’ example.

int fac(int n)

{

if (n == 0)

return 1;

else

return n * fac (n-1);

}

main()

{

printf("3! = %d\n", factorial(3));

}

n=3

n=2

n=1

n=0

return 1

return 1*1

return 2*1

return 3*2

print 6

fac

main

fac

fac

fac

Here is a recursive procedure which behaves oddly — rememberthat static variables behave like
global variables except they are private to the routine.

#include <stdio.h>

void printfac (int n)

{

static int x = 1;

if (n <= 1)

printf("%d\n", x);

else

{

x *= n;

printfac (n-1);

}

}

main()

{

printf("3! = ");

73

printfac(3);

}

We shall keep x on the right to emphasise that it is not in the stack frame.

main prints

3! =

main calls printfac

printfac (3)

x = 3*1 = 3

printfac calls

printfac (2)

x = 2*3 = 6

printfac calls

printfac (1)

which prints x, i.e., 6, completing

the line:

3! = 6

printfac returns

printfac returns

printfac returns

printfac returns

main ends

30 Conversions, casts, and pointers

C performs automatictype conversions,when an expression contains subexpressions of different
types.

• Strangely,char expressions are considered a kind of integer, and where necessary they are
‘promoted’ toint expressions.Careful. They may or may not use sign extension, so the
promoted value can be negative.

This happens on Intel chips — on the maths machines.

It is not usually noticeable, because The usual ASCII characters are between 0 and 127, and
the high-order bit is zero.

• You can get around it using theunsigned qualifier. There is a data-type
unsigned char

which does not cause sign extension.

74

• Shorts are always promoted to ints.

• Floats are always promoted to doubles.

• Ints are promoted if necessary to longs — this makes no difference on the maths machines.

• When ints and doubles are mixed, the ints are promoted to doubles.

When assigning doubles to ints, etcetera

• Assigning double to float: the value is computed and rounded.

• Int to short and int or short to char: the high-order bits are dropped.

• Doubles and floats to int: values are rounded toward zero. That is, 2.5 rounds to 2, and−2.5
rounds to−2.

Type castsare a way to force conversions. The notation is

(<casting type>) <expression>

For example, ifx is adouble, then(int) x is x rounded up or down to integer depending on
sign. Not sure what happens whenx is out of range.

(double) 2 and2.0 are the same.

(30.1) Pointers.Casts convert expressions to a plausibly equivalent value ina specified type.
There is another place where they are very important. Addresses are 4 or 8 bytes long depending

on the machine.Memory allocation functions reserve pieces of memory and return the value in a
fixed type, which used to beint, but now is a more cautionsvoid * — meaning pointer to object
of unspecified type.

To satisfy gcc, it is necessary to ‘cast’ this to the requiredtype. For example,

char * a;

a = (char *) malloc (121);

31 Files

Input/output redirection. You can arrange thatscanf() andfgets (..., stdin) read from
a file rather than a terminal, and makeprintf() write to a file:

%a.out < my_input

%a.out > my_output

%a.out < my_input > my_output

75

FILEs can be declared in C (stdio.h contains the definitions,I think).

FILE * myfile;

There are the three ‘standard’ filesstdin, stdout, stderr.

printf (....); and

fprintf (stdout,);

are the same, and

scanf (....); and

fscanf (stdin,)

are the same.

Apart from these, a file must beopenedbefore it can be read from or written to, as follows

file = fopen (<file name>, "r"); /* for reading */

file = fopen (<file name>, "w"); /* for writing */

file = fopen (<file name>, "a"); /* for appending */

fopen() returns a memory addresswhere details about the file are stored; NULL if it was
impossible to open the file. A file should beclosedafter use:

fclose (file);

If a file was opened for reading, it is unneces-
sary to close it, but does not harm.
If a file is opened for writing/appending and
not closed,

the updates will be lost.

You can read from a file usingfscanf() andfgets().
Note about fscanf(). It returns the number of input items assigned, which can be fewer than

provided for, or even zero, in the event of a matching fail- ure. Zero indicates that, while there was
input available, no conver- sions were assigned; typicallythis is due to an invalid input character,
such as an alphabetic character for a ‘returned if an input failure occurs before any conversion such
as an end- of-file occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned. (EOF is defined instdio.h, its value
is−1, I think.)

fgets (<buffer>, <buffer length>, <file>);

As already mentioned,fgets() returns the address of the buffer, if data was read, and returns
NULL if end-of-data was reached.

76

#include <stdio.h>

#include <string.h>

/* program reads lines and

* prints them with an extra space.

void decr (char str[])

{

int i;

for (i=0; str[i] != ’\0’; i = i+1)

if (str[i] == ’\n’)

str[i] = ’\0’;

}

main (int argc, char * argv[])

{

char buffer[100];

FILE * infile;

FILE * outfile;

infile = fopen (argv[1], "r");

outfile = fopen (argv[2], "w");

while (fgets (buffer, 100, infile) != NULL)

{

decr (buffer);

fprintf (outfile, "%s\n\n", buffer);

}

fclose (infile);

fclose (outfile);

}

When reading from a named file, you canread the file more than onceusing therewind() routine.
For example, it might be necessary to count the data items andrewind the file in order to process
them again:

/* Take the average of a list of numbers, but

* first counting them.

*/

77

#include <stdio.h>

main (int argc, char * argv[])

{

int n;

FILE * file;

double x, sum, average;

file = fopen (argv[1], "r");

sum = 0;

n = 0;

while (fscanf(file, "%lf", & x) == 1)

{

sum += x;

++ n;

}

average = sum/n;

printf("%d numbers read, average is %f\n", n, average);

rewind (file);

/*

* Now you can scan the numbers

* again --- but this time you

* know the average.

*/

}

32 Multi-file compilation

You can compile a C program from several files

gcc ninth.c matrix9.c

The routines inmatrix9.c are

static MATRIX * zero_matrix (int m, int n);

static VECTOR * zero_vector (int n);

void read_aug_matrix (FILE * file, MATRIX **a, VECTOR **b);

void print(FILE * file, MATRIX * a, VECTOR * b);

78

static void subtract (MATRIX * a, VECTOR * b, int i, double s, int j);

static void scale (MATRIX *a, VECTOR *b, int i, double s);

static void swap (MATRIX * a, VECTOR * b, int i, int j);

void reduce (MATRIX * a, VECTOR * b, MATRIX ** uu, VECTOR ** yy);

VECTOR * back_substitute (MATRIX * u, VECTOR * y);

void print_vector(FILE * file, VECTOR * x);

Thestatic keyword meansprivate to matrix9.c. These routines are not meant to be ‘exported.’ In
order to use the matrix routines inninth.c, the followingheader fileshould be used (it is on the
web for the ninth assignment).

matrix9.h:

typedef struct { int height; double * entry; }

VECTOR;

typedef struct { int height, width ; double ** entry; }

MATRIX;

void read_aug_matrix (FILE * file, MATRIX **a, VECTOR **b);

void print(FILE * file, MATRIX * a, VECTOR * b);

void reduce (MATRIX * a, VECTOR * b, MATRIX ** uu, VECTOR ** yy);

VECTOR * back_substitute (MATRIX * u, VECTOR * y);

void print_vector(FILE * file, VECTOR * x);

Here is a template forninth.c:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "matrix9.h"

main(int argc, char * argv[])

{

MATRIX *a, *u;

VECTOR *b, *y, *x;

FILE * in, * out;

/*

* Open in, out

*/

read_aug_matrix (in, &a, &b);

79

B

main

A

B

B

A

C

C

Figure 2: The life of variables

fprintf (out, "Input matrix\n");

print(out, a, b);

reduce (a, b, &u, &y);

fprintf (out,"Reduced matrix\n");

print(out, u, y);

x = back_substitute(u, y);

fprintf (out, "Solution\n");

print_vector (out,x);

/*

* etcetera

*/

}

33 Scope and lifetime of variables

Variables and routines have scope and variables also have lifetime.

• Scopewithin a file or a routine, below the point where the routine/variable is introduced.

• Lifetime is a single run of the routine for local non/static variablesand routine arguments. It is
the duration of the entire program for global and static variables.

80

Scope Lifetime Initialised how often?

local private to routine lasts for a single run of
the routine

initialised (if at all) at
start of every run of
the routine

global accessible from all
routines

lasts for entire run of
the program

initialised once

routine argument private to routine single run start of every run

static local
variable

private to routine lasts entire program intialised once

Prototypesallow routines or variables to be introduced without a full definition. Declaring vari-
ables with the keywordextern is a form of prototyping.

Keywordstatic applies also to global variables and routines. For them, it meansprivate to the
file, as opposed to external scope.

Variables introduced withextern are prototypes and need to be defined in the same file or some other
file.

int a[] = {1,2,3};

extern int c;

/*

* c must be defined in this file or

* another with multifile compilation

*/

static int d; /* private to the file */

void e (int n) /* prototype */

{

int b = a[1]; /* OK, within scope of a; */

}

static void f (){} /* private to the file */

int c = 1; /* ok but odd */

int main(){}; /* correct but pointless */

34 Operator precedence

We know the BODMAS rules for arithmetic operators. C is full ofoperators, and they have carefully
defined ‘precedence.’

• The highest precedence operators are evaluated left-to-right. Otherwise they have equal prece-
dence. In this and other groups, where ‘right to left’ or ‘left to right’ is stated, this fixes the
precedence where otherwise they have equal precedence.

81

• [] (i.e., accessing array element)

• . (structure member)

• − > (structure member through pointer)

• Postfix increment/decrement

• Next, right to left:

• Prefix increment/decrement

• Casts

• ∗p (the object stored at locationp)

• & address

• sizeof()

• +/% multiplication, division, remainder modulo
Left to right.

• +− addition, subtraction
Left to right.

• <,<=, >=, > relations
Left to right.

• ==, ! = relations
Left to right.

• && logical AND
Left to right.

• || logical OR
Left to right.

• =, + =, − =, etcetera Assignment and assignment operators
Right to left.

Examples.
Disambiguate the following expressions by inserting parentheses, and say whether the expression

is meaningful (legal), assuming the variables have suitable types.

(i) while (*x++!=’\0’)..

(ii) a = b = c == 0

(iii) a = b == c = 0

(iv) a = b = c == d && e || f || g

(v) * x[3] -> y[4]

82

(i) while (*x++!=’\0’)..

while ((*(x++)) != ’\0’)..

legal

(ii) a = b = c == 0

a = (b = (c == 0))

legal

(iii) a = b == c = 0

a = ((b == c) = 0)

illegal

(iv) a = b = c == d && e || f || g

a = (b = ((((c == d) && e)|| f)|| g))

legal

(v) * x[3] -> y[4]

* ((x[3]) -> (y[4]))

illegal

35 May 2014 syllabus

35.1 Marks breakdown

• Questions will be based on the topics given below, on the programming assignments, and the
quizzes.

35.2 Topics

• Data types: char, short, int, long, float, double, address

• 2s complement short and int numbers, addition, and subtraction.

• Programming elements: for-loops, assignments, conditions, while, if-then-else.

• Command-line arguments, atoi, atof.

• Files: fopen, fclose.

• Printf, scanf, fgets, fscanf, fprintf. Difference betweenprintf and scanf.

• Array and string initialisation.

• Functions and subroutines: writing fairly simple functions and subroutines.

Simulating given functions and subroutines, which might berecursive.

• Single and double precision floating point numbers. (You should know the1 : 8 : 23 format for
single precision. Double precision conversions will not beasked.)

83

• Arrays, 1- and 2-dimensional. Calculating the size of an array and the addresses of array
elements, for which you should know the length of char (1), short (2), int (4), float (4), double
(8), address (4). You must know these lengths: they would notbe given in the exam.

• Static and automatic variables in routines: automatic variables are stored on the runtime stack.

• Global variables, keywords

• static affects bothlifetime(throughout the program run) andprivacy: static local vari-
ables are completely private, static global variables and routines are private to the file in
which they occur.

• extern before a declaration is when the variable type is required but the variable is
defined elsewhere, probably in another file.extern declarations do not reserve space.
These are summarised at the end of Section 32.

• Arithmetic expressions

• Order of evaluation (precedence), only up to BODMAS rule and the fact that relations
have lower precedence. For example

2 == 3+4

is evaluated as follows:3 + 4 first, having higher precedence than==, so the expression
becomes2 == 7; this evaluates to0 (meaning false).

• Conversion, as for example where
1 + 1.0/2

evaluates to1.5, hecause1.0/2 is evaluated as double, and1 is converted to double before
adding.

1 + ((double)1)/2;

has the same effect.

• Casts, such as(int) 3.4 and(char *) malloc (n+1).

• Malloc and calloc and strings, e.g., for copying strings.

• Structures applied to matrices, malloc and calloc.

• Use of header files and multi-file compilation, as in the last programming assignment.

84

	Programming languages
	Computers and number systems
	Number systems

	Basic data types
	For-loops and printf
	Arithmetic in different bases
	Integer arithmetic
	Command-line arguments (argc and *argv[])
	Assignment statements and stdlib.h
	Double-precision variables
	Floating-point numbers
	Binary point
	Calculating the mantissa digits.
	Scientific notation.
	Double precision

	Scanf() and input/output redirection
	`While' loops
	If-statements and conditions
	Nested if-statements and indentation
	Array initialisation
	Day of week program
	2-dimensional arrays
	Functions and subroutines
	Simulating subroutines and functions
	Gauss-Jordan elimination
	Gaussian elimination
	C has call-by-value
	Subroutine array arguments
	Global variables
	String processing
	Pointers and arrays
	Memory allocation, casts, and strings
	2-dimensional arrays

	Structures
	Structures
	Equality, assignment, routine arguments
	Matrices

	The runtime stack and recursion
	Conversions, casts, and pointers
	Files
	Multi-file compilation
	Scope and lifetime of variables
	Operator precedence
	May 2014 syllabus
	Marks breakdown
	Topics

	Boolean operators || and && are semi-strict.

