Mathematics 1261 (computing with C), Michaelmas 2012

Colm O Dlnlaing
March 31, 2014

Syllabus
Programming languagesll
Computers and number system§&
Basic data types3
For-loops and printf [4
Arithmetic in different basesB
Integer arithmetic
Command-line arguments (argc and *argv(])[7
Assignment statements and stdlib.
Double-precision variable€9
Floating-point numbers[10
Scanf() and input/output redirection[11
‘While’ loops [12
If-statements and conditiong13
Nested if-statements and indentatiofi4
Array initialisation [13
Day of week program[18
2-dimensional arraysiI?
Functions and subroutined18
Simulating subroutines and functiong19
Gauss-Jordan elimination2d
Gaussian elimination21
C has call-by-valueZ2
Subroutine array arguments[23
Global variables[24
String processing25
Pointers and arrays2g
Memory allocation, casts, and string&7
Structures[28
The runtime stack and recursion[29
Conversions, casts, and pointeri80
Files31
Multi-file compilation [32
Scope and lifetime of variable$33

Operator precedencd34
May 2014 syllabug35

1 Programming languages

The course aims at a reasonable level of skill in C progrargmin

Many computer programming languages were invented in te@aB@ 60s. The original idea was
— | think — that a programming language would be so close tdiBimghat non-experts could use
it.
(1.1) A computer accepts instructions in a very compact form datemachine codeA machine
program(also called a ‘binary’ or ‘executable’) is a list of insttians in machine code. In the 1970s,
with small microprocessors, it was common to write prografinsctly in machine code. Here is
an example of machine code. Nowadays, most machine-codegons have thousands of lines like
these.

Memory Machine
Address instructions-------------------- - - - - - - - —————————

00000210 69 6e bf 75 73 65 64 00 bf 5f 6¢c 69 62 63 5f 73
00000220 74 61 72 74 5f 6d 61 69 6e 00 47 4c 49 42 43 5f
00000230 32 2e 30 00 00 00 02 00 02 00 01 00 00 00 00 00
00000240 01 00 01 00 24 00 00O 00O 10 00 OO0 OO OO 0O 00 00
00000250 10 69 69 0d 00 00 02 00 56 00 00 00 OO0 00 00 00
00000260 d8 95 04 08 06 05 00 00 dO 95 04 08 07 01 00 00
00000270 d4 95 04 08 07 02 00 00 55 89 eb 83 ec 08 e8 61
00000280 00 00 00 e8 c8 00 00 00 e8 £3 01 00 00 c9 c3 00
00000290 ff 35 c8 95 04 08 ff 25 «cc 95 04 08 00 00 00 00
000002a0 ff 25 dO 95 04 08 68 00 00 00 00 e9 e0 ff ff ff
000002b0 ff 25 d4 95 04 08 68 08 00 00 00 e9 dO ff ff ff
000002c0 31 ed be 89 el 83 e4 fO 50 54 52 68 20 84 04 08
000002d0 68 cO 83 04 08 51 56 68 84 83 04 08 e8 bf ff ff

(2.2) Akind of low-level programming language calladsembler languageas developed to make
programming easier. It was much easier than machine codestibwery laborious. Here is an
example.

.file "progl.c"
.section .rodata
.LCO:
.string "%d\n"
.text
.globl main
.type main, @function

main:

pushl Jebp

movl hesp, %hebp

subl $24, Yesp

andl $-16, Y%esp

movl $0, %eax

subl heax, hesp

movl $5, -4(%ebp)

leal -4 (%ebp), ‘heax

incl (%eax)

movl -4 (%ebp), eax

movl heax, 4(%esp)

movl $.LCO, (%esp)

call printf

leave

ret

.size main, .-main

.section .note.GNU-stack,"",@progbits
.ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-13)"

Assembler languages are very hard to use nowadays, probabduse they are almost never

used.

In the 60s and 70s they were easier tdluse.

Next came programming languages which made programmind) easier. Here are some.

FORTRAN was suitable for scientific calculation, especiaiyolving matrices. Since FOR-
TRAN is relatively simple, it can do its work efficiently andssll used for numerical compu-
tation.

COBOL is still used for commercial programming, such as paynalnagement. It was de-
signed in the 50s by one woman, Grace Hopper, from the US Navy.

APL is a weird but concise language which may still have ithesiasts. Its major advantage
was conciseness, a consideration when using slow modemswutrelevant. As it uses many
special symbols, it requires an APL keyboard.

LISP was developed for artificial intelligence.
ALGOL was a more sophisticated substitute for FORTRAN.

SIMULAG67 was the first ‘object-oriented’ language, leadilmgSmallTalk, C++, Eiffel, and
Java.

PL/1 was IBM’s language intended to combine the power of botitr&n and Cobol.

ALGOLG68 was, at the time, a very sophisticated language.hAttime people found it very
difficult to implement.

Yh

ave been told that Motorola 6800 assembler is much edmerlhtel assembler, which is shown here.

3

BASIC was probably meant for children, but became importetiause it was easy to imple-
ment on minicomputers.

PASCAL was a much-simplified form of ALGOL (and ALGOLG68). Ukdi ALGOLGS, it was
easy to implement on minicomputers, which made it very pampiul the 70s and 80s.

C was introduced in the early 70s. It was possibly meant to fuera of PASCAL without
certain limitations. C programs are unmistakable in apgreae, quite unlike Pascal programs,
but only at the level of programming notation.

ADA was developed by the US military in the early 1980s, tolaep several different pro-
gramming languages used in administration, numerical wemki bombs. In appearance it is
closer to Pascal than C, though with a notation different floathn.

C++ was developed in the 80s as an object-oriented form of @dely resembles C.

EIFFEL was developed in the 80s at the same time as C++. It ldesrAda. Some respected
authorities consider Eiffel better than C++ and Java.

JAVA was originally meant (I believe) for programming toarst, but is now a very popular
C-like variant of Eiffel (and C++), with internet applicatien

SETL, developed in the late 70s, is a little-known languagenfriting algorithms with a nota-
tion based on set theory.

SNOBOL is an old language intended for processing textual. damay have had some influ-
ence on special-purpose languages like Awk, Perl, and Rytho

FORTH is a language | never saw, but its programs are in pdstim, which has sometimes
been used on calculators.

POSTSCRIPT is a graphics and typesetting language which sésaupostfix notation.

TeX also provides a complete, but low-level, programminglaage.

(1.3) Here is a simple C program — actually, the assembler progtaweawas derived from it.

#include <stdio.h>

/* first program example */

main()

{

int i=b;

i

= i+1;

printf ("%d\n", 1);

¥

It is trivial, but uses enough C to be able to guess what sortteecdssembler code does.

i is an integer, initialised to 5.

Nexti isreplaced by +1, i.e., 6.

Last,i is printed. The' %@\ n" is aformat controlstring. What does n mean?

What is#i ncl ude <stdi 0. h>good for?

e Whatis/* first program exanpl e */ good for?

Here are some examples of a program to scan a list of parestlaesl say whether the list is

balanced. For example, ()(()) is balanced but ())()(() is no
Little if any of this code has been tested; none of the obedétguages and none of the exotic
languages. The interested student is invited to test it.

FORTRAN
FUNCTION BALANCED (INTEGER S [100], INTEGER SIZE)
INTEGER SURPLUS
SURPLUS=0
I=0

LOOP I=I+1
IF I.LE.SIZE GOTO NEXT
IF SURPLUS.EQ.O RETURN TRUE
RETURN FALSE

NEXT IF S[I].EQ.RPAREN GOTO RPAR
SURPLUS=SURPLUS+1
GOTO LOOP

RPAR SURPLUS=SURPLUS-1
IF SURPLUS.GE.O0 GOTO LOOP
RETURN FALSE

RPAREN EQ 1H’)’

PASCAL
function balanced (s: packed array [1..100] of char;
size: integer): boolean;
var
i, surplus: integer;
result: boolean;

begin
surplus := 0;
balanced := true;
for i := 1 to size do
begin
if s[i] =)’
surplus := surplus - 1;
else
surplus := surplus + 1;
if surplus < O then
balanced := false;
end

if surplus <> O then
balanced := false
end

C

int balanced (char s[])
{

int i, surplus;

surplus = 0;

for (i=0; s[i] !'= °\0’; ++i)
if (s[i]=="()
++surplus;
else

{
-- surplus;
if (surplus<0)
return O;

}

return (surplus == 0);

}

EIFFEL

balanced (s: STRING) : BOOLEAN is
local

i, surplus: INTEGER
do

from
i:=1
until

i > s.count or surplus < 0O
loop

if s.item[i] = ’(’ then

surplus := surplus+1l
else
surplus := surplus-1
end
i =i+l
end

Result := (surplus = 0)
end

LISP
define ((
(right_to_left (lambda s)
(cond ((null s) 0)
((negp (right_to_left (cdr s))) -1)
((eq (car s) ’(’) (subl right_to_left (cdr s)))
(T (addl right_to_left (cdr s)))
)
)
(balanced (lambda s) (zerop (right_to_left s)))
)

APL uses a special keyboard, so we use mathematical typesett

A(—S:/ (/_S :l)/
B+ +\A
C+ (B>0)AB[pB] =0

2 Computers and number systems

All computer data is stored as patterns of Os and 1s. A ‘b# Isnary digit, i.e., 0 or 1, or an object
which can take these values. There is a multiplicative &ffex that 8 bits combined together can

take2® = 256 different values.

A computer has several components, includdentral memory, central processor, hard disc,

and terminal (or monitor).

Long-term data is on the hard disc; the central processoksvam short-term data in the central

memory.
Here is a C program

#include <stdio.h>

main()

{
printf ("Hello\n");
printf ("there\n");
}

Create afildhel | 0. ¢ containing the above lines, then run

gcc hello.c

This will create a filea. out which the computer can run as a program:

a.out

will cause the message

Hello
there

to be written to the terminal.
Question: what's the \n’ for?

(2.1) Although letters on the terminal look like ordinary newsgpyisay, under close inspection the
letters spellingHel | o are just patterns of dots, something like

e o

How are these letters stored on a computer? they could bedsast x 5 patterns of zeroes and
1s, where 0 means ‘no dot’ and 1 means ‘dot.” This would req8b bits per letter. Instead, all
characters are stored as 8-bit patterns under an intenadlfi@greed code, the ASCII code. To learn
more, type

man ascii

ASCII code for H is 01001000, for e is 01100101, and so on. Edushows the basic compo-
nents.

Conclusions.The computer stores all data as patterns of Os and 1s, ¢atttdngs. All charac-
ters appear on the screen as patterns of dots.

Central memory, processor, hard discWhen you have edited and saved your proghehl o. c,
it is now stored on théard disc. (in ASCII, of course). It idata.

It is the processorwhich does the work of the computer. Its job is to reastructions from
central memory and execute them. The instructions are io@utén executable programs.

When you type

gcc hello.c

the computer copies an executable program catexinto central memory, then executes that pro-
gram on the data contained Irel | 0. c. It produces a new executable program which is usually
calleda.out and stores it on disc.

When you type

a.out

the computer copies. out into central memory and executes it, with the results asriest

9

01100{10110001001

01100110110001001 hard

disc central
memory

01100110130001001
processor

0100100001100101011011000110110001101111000010100
0111010001101000011001010111001001100101000010100

g

terminal

Figure 1: Parts of a computer

2.1 Number systems

Our decimal number system is derived from the human ﬁaBidary numbers are much simpler.
The binary stringd1001000 represents

0+0x24+40x224+1x24+0x2"+0x22+1x2040%x2"=8+64="72

(that is, 72 in decimal, of course).
It is easy to list the binary strings of length 3 in ascendindgo:

000, 001, 010, O11,
100, 101, 110, 111

The rightmost bit is called the ‘low-order bit.” The ‘low cgdbit’ changes most often; the next bit
changes half as often; the high-order bit changes only once.

It is easy to convert a bitstring into actal string. Simply put it in groups of 3, starting from the
right. Thus

01001000
01 001 000
1 1 0

The ASCII code for H has octal valug 0. On the other hand, interpretirig0 as an octal string
we get

20r from any primate’s.

10

0+1x8+1x8 =72

(again, 72 in decimal).

Question. The ASCII code for e is 01100101 as a bitstring. What is it in l@cta decimal?

Octal numbers give a compact way to represent bitstringsid3exadecimal numbers which
are numbers to base 16. We needg digitsto form hexadecimal numbers. One uaed, c, d, e, f
(or A B, C, D, E, F) for the digits> 10. Every hex digit equals four binary digits. The hex digits
convert to octal, binary, and decimal as follows

hex octal binary decimal

0 0 0000 0
1 1 0001 1
2 2 0010 2
3 3 0011 3
4 4 0100 4
5 5 0101 5
6 6 0110 6
7 7 0111 7
8 10 1000 8
9 11 1001 9
a 12 1010 10
b 13 1011 11
o 14 1100 12
d 15 1101 13
e 16 1110 14
f 17 1111 15

11

There are procedures for addition, subtraction, multgtian, and division, in binary, octal, and
hex. Addition is easy. For example,

binary octal hex Decimal
10100011 243 a3 163
+11010101 +325 +d5 +213
10 10 8 376
10 7 17
10 5 -
1 - i.e
1 i.e. c3
1 243 +d5
10 +325 -—=
——————————— - 178
That is 570
10100011
+11010101
101111000

Multiplication and division in binary are quite simple. Eeqt for trivial cases, they are always
‘long multiplication’ and ‘long division. We shall use bamy division later, but no other hand-
calculations are of interest.

3 Basic data types
4 For-loops and printf
5 Arithmetic in different bases

6 Integer arithmetic

(6.1) 2s complementA short integer is 4 hex digits, 16 bits, or 2 bytes long so it cepresent at
most2!% = 65536 different integers. We might expect it to take valles 65535, but instead half of
the values are negative. The range of values is fraiR768 to 32767.

Notice that 43 decimal is represented2ds 00 hex. This shows that on our machines the first
byte islow-order, the second iwigh-order It is said humorously that on Intel processors, numbers
are storedittle-endian meaning that the low-orddayte (but not the low-order bit) is stored before
the high-order byte. We should preferably write it with higfder byte first:

00 2b

12

This represent8 x 16 + 11 = 43, as expected.
Next, —9 is represented as7 ff, or, high-order byte firstt f f7. Normallyff ff would
represen!® — 1 andf f f 7 would be2'¢ — 9. The general rules are as follows.

e Let N = 25, (The same idea holds for long integers, except that for iotegersN = 23'.)

An integerzx is in short integer rangef
—N<zg<N-1.
o If —N <z < N — 1, then the2s-complemerform of = is

r fO<xz<N-1
2N +z if—-N<z<-1

Thus a 2s-complement short integer has ‘face value’ betwe@handf f f f (hexadecimal) or
0 and65535 (decimal), and the signed integer it represents is in thgaaf32768 . . . 32767.

If ' andy’ are 2s-complement integers, then their 2s-complementsum i

2’ +1 mod (2N) i.e., '+ y mod 65536.

e Modular arithmetic:z mod y is the remainder on dividing by y. For example]1 mod 4 = 3.

(6.2) Proposition Let x and y be two integers within the range of short integers, i-e32768 <
x,y < 32767. If x + y is also in this range, then 2s-complement addition will piwglthe correct
answer in 2s-complement form.

Partial proof. If x andy are both nonnegative, thén< = + y < 2'° and there is no carry to the
16th bit.

If x andy are both negative, and+ y is in range, theR!® > 216 4z + ¢y > 215 But (2!6 + x) +
(216 +y) = 216 + (216 4z +). The remainder modul®'® is 2¢ + z + ¢, and it is betweeR!® and
216 — 1, which is correct.

Case one positive, the other nonnegative: skipppef}

(6.3) Converting decimal to short.Positive numbers can be converted to hexadecimal by refigate
dividing by 16. For example, to convert 12345 to hex,

12345 + 16 = 771 remainde®, i.e., 12345=16x771+9
771 + 16 = 48 remaindeB3, i.e., 771 =16 x 48+ 3
48 ~ 16 = 2 remaindef), i.e., 48=16x340
12345 = 16 x (16 x (16 x 3+0) +3) + 9
12345 = 16® x 3+ 16 x 0+ 16 x 3+ 9
(12345)10 = (3039)16

13

To convert a negative integerto 2s-complement, first conveft| to hex, then subtract from
ffff,thenadd 1. This is the same as subtracting f266) as required.
For example, to convert 12345 to 2s-complement short integer,

(12345)10 = (3039)16
ffff—3039 =cfcb
cfc6+1=cfct
Little endian: ¢7 c¢f

Negatives.If x is in short integer range, and so+s;, and the short integer representation:o$
y, then—y is represented g&'° — y), whetherz is positive or negative.
The only case where s in range, but not-z, is x = —32768, wherey = 216 — ¢ = 32768.

(6.4) Floating point numbers are the computerese version of high-precision decimal eusab
They can be broken down into exponenand mantissan (both integers) and represemt x 2°.
Further details later.

(6.5) To disinguish between hex and decimal, we write, for exan{ghd ;s = (35)10.

7 Command-line arguments (argc and *argv[])

To be able to supply your program with command-line argusyeadd a bit to your main() section.
First, more notation about characters and character string

e A single character (as opposed to a ‘string’ of charactersg¢presented with a single quote,
such as

)a;, ’A’, J\n7, 1\07

e Thenull character is represented a8", 8 zero-bits 000000000

e A charactesstringis an array of characters, terminated with a null charaErexample,

"hello\n"

is stored as an array severcharacters, including the final null character.

e For technical reasons, a character string may be declareg a% rather than d] notation,
e.g.,

char *x x

14

#include <stdio.h>

main (int argc, char * argv[])

{
int 1i;
for (i=0; i<argc; ++i)
printf ("%s\n", argv[i]);
}

If one compiles this program and types

a.out a quick brown fox

the four character stringsa”, "qui ck", "brown", and "fox” are calledccommand-line argu-
ments.The result is

a.out
a
quick
brown
fox

Partial explanation. You can, as shown, use & gc as you would use an integer variable. It
means the number of character strings on the ‘command imeiding thea. out . The minimum
value is 1.

The variablear gv is anarray of character stringslts size is not given, bur gv[i] is thei-th
command argument, valid febetweer) andar gc- 1.

The command-line arguments are character strings, buttrepe converted to integers, etcetera,
through anothe#i ncl ude:

#include <stdlib.h>

If = is a character string, then

atoi (x)

is theinteger value ofz. If x does not represent an integer tlaroi (x) is just zero.
For example,

#include <stdio.h>
#include <stdlib.h>

15

main (int argc, char * argv[])
{
int dd, mm, yy;

dd = atoi (argv([1]);
mm = atoi (argv[2]);
yy = atoi (argv[3]);

printf ("Date is %02d/%02d/%02d\n", dd, mm, yy);

8 Assignment statements and stdlib.h

(8.1) Noteon names of variables.

Any string of letters, digits, and/or underscores, whiclgibe with a letter or underscore, is
suitable for a variable name.

C is case sensitive, i.e., ‘a’ and ‘A’ are different. Usuatiye uses lowercase (small letters) in
variable names. Capital letters are usually reserved farakings, though the don’t have to be.

(8.2) Assignment statements usually have the form
TEMPLATE

(variable or array
el ement) = (value)

The value can be a constant, or it can beathmetic expressionformed of constants, variables,

etcetera. Tharithmetic operators are
+,—,%, /%

the unusual one % for remainder. m%n means the@emainderon dividing m by n (m andn
should be integers).

The old BODMAS formula of arithmetic applies here: brackefs division, multiplication, ad-
dition, subtraction. It is easy to make mistakes. For exantpe formula for the variance of a list
of n numbers is

n—1

ni . Z(azi —z)?

1=0

(following the C array-indexing conventiom; is the mean, which needs to be calculated first). In
programming this, one probably evaluates the sum first, lagwl the variance. Some people write

variance = sum / n-1;

This is a mistake, because it means

%Z(w _E2o1

16

Exercise.Correct the mistake.
Left-to-right order. Generally, where the BODMAS rule does not tell you how to eatdu
left-to-right evaluation applies. For example,

=R e
I+
N NN
|
~ W Www
|

(1+2)+3 = 343 = 6

= (1-2)-3 = -1-3 = -4
= (1-2)+3 = -1+3 = 2
1/2)/3 = 0/3 =0

1/2/3

There is no notation for powers.You can use things fronmat h. h to compute powers.
One can compute a power using a for-loop:

/* calculate x"n, assuming n >= 0 */
pow = 1;
for (i=0; i<n; ++i)
pow = pow * X;

Example using atoi(). There is a ‘functionatoi(...) which converts character strings to 32-bit
integers. It needstdlib.h. Here is an example, adding up numbers from the command line

#include <stdio.h>
#include <stdlib.h>

main(int argc, char * argvl[])
{

int x, sum, i;

sum = 0;
for (i=1; i<argc; ++i)

x =atoi Cargv [1]);
sum = sum + Xx;

printf ("Total is %d\n", sum);

The remainder operator (also called thed or nodul o operator) can be used to test whethes
even:

if (n% 2==0)

and it can also be used to calculate the weekday a date falls on

17

(8.3) Modular arithmetic. Recall that ifn andd are integers (withl positive) then there exist
unique integerg andr such that

n=qd+r,
where 0<r<d-1:

q is thequotientandr theremainderon division ofn by d.

Warning. In C, the quotient./d and remainden’d are different from the mathematical defini-
tion if n < 0: division ‘rounds towards zero’ rather than always ‘rourgddown.’

Modular arithmetic respects addition and multiplicati&o, if

rTt+y==z

then
((x mod 9) 4+ (y mod 9) mod 9) = (2 mod 9)

Casting out the 9s.It is easy to calculate the remainder modulo 9. Just addsdagitl repeat until
one digit is left.
For example,
12345 = 1+2+3+44+5=15—6

In former times, this was used to check calculations: fongxa, if andy are large then there
could easily be a mistake in your calculationagf. But you can ‘cast out the nines’ as a check on
your answer. It won't always reveal mistakes, but it usudtyes.

Exercise (to be discussed in lecture)/rite a program converting a date to day-of-week. This is
‘casting out the sevens.

Abbreviations.

x = x+1;
can be abbreviated
(if x is an integer, long,
or short integer)

as
x +=1;

or
++X;

or
X++;
x = x-1;

as
x —-=1;

or
-—x;

or

18

= X*y

can be abbreviated as

X *= y;

»
I

x/y;

can be abbreviated as

x /=7y;

X=

x %=

and probably

xhy;

can be abbreviated as
Yy

9 Double-precision variables

10

‘Doubles’ (double-precision floating point) occupy 8 bytes
Their exact layout will be discussed later.

One can use arithmetic expressions with doubles. Where égulid integers both occur in
expressions, the integers are converted to doubles.

Output format is

%t -—— %[-Jw.df Default 6 decimal places.
he -—- scientific notation sure of the details
hg —-—— chooses whichever fits better

Constants with a decimal point mean doubles. Thigsis 0, but1.0/2 or 1/2.0 all come out
as.5. What aboutl /2 + 0.0?

They can be read from the command line. Insteaatadi () , useat of () .

Integer values can be assigned to double variables andveisa= When a double value is
assigned to an integer variable, the valumisnded towards zero.

Floating-point numbers

10.1 Binary point

Like a decimal point number, a binary point number would beimiber representable in the form

j:akak_l e ao.blbg c.

where thez; and theb; are binary digits. The number represented is

+ (Z Da;+ Y (%)j bj>

19

There can be infinitely many digits after the ‘binary point.’
For numerical work, binary floating-point numbers are mudreruseful. A binary floating-point
number is represented as
+2° x 1.byby. ..

e is theexponent
m = 1.b1by ... themantissa.
Notel <m < 2.
Any nonzeroreal number can be represented as a binary floating-poinbeum

10.2 Calculating the mantissa digits.

We are given a real number wherel < m < 2. In ‘binary point,
m = 1.010203 . ..
The digitsby, b, . . . can be calculated as follows. Let=m — 1.
ro = 0.b1b2b3 . ..

27’0 = bl.bgbg c.
Thenb, is the integer part ofry. Letr; = 2rg — by:

r1 = 0.bybs . ..
2r1 = ba.bs . ..
The integer part i$,. Letry = 2r; — by
ro = 0.bs . ..
and so on. Summarising:
ro=m—1

and repeatedly

bj+1 = integer part oRr;
r;4+1 = fractional part of2r;

Example. Calculate the floating binary representatiors@f9. Divide by 2? to get
10/9

This is between and2, so the exponent i3 and the mantissa i) /9.

20

Jlri 2r; bin
0|5 2 0
112 3 0
2|5 ¢ 0
38 ¥ 1
40 31
51 ¥ 1
6| 2 0

This is a point of recurrence, and the pattern will repeater&fore

1
50 = 1.000111000111000111 ...

It can be checked by summing a geometric series

14y
64 ' 6427

7 1
=14 — —
i (To)

Jj=0

—1+7 ! =
64 \1-1/64)

L T6
6463
14+1/9=10/9.

Thus the binary floating-point representatiorsof9 is

23 % 1.000111000111000111 . ..

10.3 Scientific notation.

Integer arithmetic is not much use for scientific computatihich needsccuracy.Hence, single-
and double-precision floating point numbers.
Scientific notation. In scientific applications, ordinary decimal numbers areltmg for conve-
nience, so a notation of the form
+(mantissaE(exponent
is used. For example, the number

123000000000

is more compactly represented as
1.23E+9

21

The ‘correct’ position of the decimal point depends on thpament; the decimal point is ‘float-
ing’; hence the term floating point. A (decimal) floating-ponumber immormalisedf its mantissa is
at least 1 and less than 10.

According to the IEEE floating-point standard, a (singlegision) floating-point number occu-
pies 4 bytes. It consists gign, mantissaandexponentlt is normalisedif its mantissa is at least 1
and less than 2.

¢ In a single-precision floating-point number, the high-mrbli@ is thesign bit 1 for negative, O
for positive. The sign is separate, i.e., the mantissa i2aabmplement.

e The exponent’ is stored in the next 8 bits, ‘biased,” not 2s complemént; means-127 and
f fie means+128. In other wordsF + 127 is stored in 8 bits, assuming it fits.

e Thefractional part of the mantissa is stored in the 23 low-order bits.
e Zero is an exception, represented as a string of 32 zero-bits

Double-precision floating-point numbers occupy 8 byteseyTuse the same ideas as in single-
precision, but now they have

e asign bit
e 11 exponent bits, and
e the 52 low-order bits of the mantissa.

(10.1) Why use this representation?Because accurate calculation shoatshle up and down.
Suppose you measure the circumference of a sphere acauthgerearest inch. Is that accurate or
not? Depends on the sphere.

| Accuracy is measured as a proportioh.
With floating-point numbers, there must be loss of accuramyetimes. However, the IEEE
standard makes certaguaranteeswhich we shall calthe IEEE promise.
Example. Convert80/9 to single-precision floating-point.

e The sign bit is zero.

e The exponent is adjusted so that the mantissa is between 2:afick (10/9). The ‘true’
exponent is 3 and the mantissa should approxim@té. The infinite precision floating point
representation has been computed in a previous example.

Now we must continue the fractional part until it exceeds 28 b
1.00011100011100011100011 [1000111 ..]
The part after the 23rd bit is more than half the value of thgtdm rounding is upwards, —
meaning 1 is added to the 23-bit string as if it were a 23-lu¢faalue integer.
] .00011100011100011100100\
Now we can assemble the floating-point representation.

3Floating-point numbers are ‘little-endian’ on Intel presers. The high-order bit is the high-order bit of the fourth
byte. We stick to ‘big-endian’ descriptions.

22

e signbit0
e True exponen3, biased exponeri7+ 3 = 130. Thisis10000010 in 8-bit (face-value) binary.

e The mantissa is shown above.

Hence the number in binary is

0 1000 0010 000111 000111 000111 00100 =
0100 0001 0000 1110 0011 1000 1110 0100 =
4 1 0 e 3 8 e 4

little endian: e4 38 0Oe 41

Example. —5/1152 = —5/(9 x 128).

e Sign bit 1.
e Normalise: mantissa becom&s/9, same as before.

e Exponent:

10/9
—5/1152 = ——L~
5/115 256

and256 = 28, so the exponent is 8.

e Add 127.
127 -8 =119=64+ 32+ 16 + 4 + 2 + 1, so the exponent is represented)asl 0111.

1 0111 0111 000111 000111 000111 00100
1011 1011 1000 1110 0011 1000 1110 0100
b b 8 e 3 8 e 4

little endian: e4 38 8c bb

10.4 Double precision

The double-precision layout is, briefly,
|1+11+52, bias 1028

(and little endian).
Example. —5/1152 = —5/(9 x 128).

e Sign bit 1.

e Normalise: mantissa becom&s/9, same as before.

23

e Exponent:

10/9
—5/1152 = ——L~
/ 256

and256 = 28, so the exponent is 8.

e Itis easier to compute the biased exponent directly in lginar

0 1111111111
- 1000
0 1111110111

e 000111 000111 000111 000111 000111 000111 000111 000111 0001 : 11 o00C
Round up

000111 000111 000111 000111 000111 000111 000111 000111 0010

Putting together

1 01111110111 000111 000111 000111 000111 000111 000111 000111 000111 001
1011111101110001110001110001110001110001110001110001110001110010
1011 1111 0111 0001 1100 0111 0001 1100
b f 7 1 c 7 1 C
0111 0001 1100 0111 0001 1100 0111 0010
7 1 C 7 1 C 7 2

Little endian 72 1c ¢7 71 1c c7 71 Dbf

11 Scanf() and input/output redirection

(11.1) The easiest way to supply a little input to your program istigh command-line arguments.

Another way to get data is through teeanf procedure. Usingcanf , one can read data from
the terminal.Scanf is intended to be a kind of oppositeggoi nt f, inthe sense thatwhat i nt f
prints below should be whatcanf expects below.

printf ("m=Yd\n",m) ;
scanf ("m=%d",m); /* WARNING: THIS IS WRONG */

There is an important difference here. We have yseidnt f to print arithmetic expressions and
strings. For example,

printf ("m=%d, 2*m=/d\n", m, 2*m);

24

We do not expect to ‘scar2* m While pri nt f prints expressions scanf reads variables.
More exactly,

Printf printsvaluesto the terminal.Scanfreads data from
the terminal and stores it at variablesldresses

(11.2) Definition Given a variablex, its addresss given by the expressidix. This must be used
for the basic data typeshar, int, etcetera, though not for character strings.

Character strings are different. They are arrays, and will be studied later.
We shall usescanf to read numeric data only. It would be confusing to do mord vtit
Rules for interpreting the format control string:

e ‘White space’ — blanks, tabs, and newlines, generally ignored (but newlines are more
complicated).

e scanf reads input andeturns a valugnamely, the number of items successfully matched.

Keep things simple. Only usescanf for reading a list of numbers from the terminal, without
any fancy formatting.
Here’s an example of scanning using a for-loop.

#include <stdio.h>

main()

{
int i, m;
int a[10];

scanf ("%d", &m); /* m = number of items,
* assumed at most 10 */

for (i=0; i<m; ++i)
scanf ("%d", & (a[il));

printf ("/d items in array\n", m);
for (i=0; i<m; ++i)

printf ("%d ", alil);
printf("\n");

Notice that data begirafter the command line.
% gcc scanl.c

% a.out
3

25

1
2
3
3 items in array
123

CTRL-D

h

Here’s a version which uses scanf to detect END-OF-DATA h&wd is no need for the number
of items input.

#include <stdio.h>

main()

{
double val, x[1000];
int num_read;
int n;

num_read = 1;

n = 0;
while (num_read == 1)
{
num_read = scanf ("%41f", &val);
if (num_read == 1)
{
x[n] = val;
++n;
}
+

printf ("n=%d\n", n);

26

NO NEED to be so complicatedHere’s a simpler version

#include <stdio.h>

main()

{
double val, x[1000];
int num_read;
int n;

n = 0;
while (scanf ("%1f", &val) == 1)
{

x[n] = val;

++n;
+
printf ("n=Y%d\n", n);

hgcc scan2.c
ha.out

12

3

3 items in array
123

CTRL-D

b

END-OF-DATA is signalled by CTRL-D
Input redirection. One can prepare a file, called mydata, say, containing, say

1
2 2
and type

a.out < mydata

One gets the same results as above.
NOTE: there is no need to include CTRL-D in the file ‘mydata’
Scanf() and doublesBe very careful about the format when inputting doubles uscamf().

double x;
scanf ("%f", &x);

iswrong. It would be correct for inputting | oat s. Use

27

scanf ("%1f", & x);
The 'I' is the letter ell, and ‘If" means ‘long float.” What

double x;
scanf ("%f", &x);

does is to convert the input number to a single-precisiorn 8od store it in the first (low-order) four
bytes inz. The other four bytes are left uninitialised.

12 ‘While’ loops

A while-loop is related to a for-loop. Actually, one coulditerevery while-loop as a for-loop, but it
could be artificial. The general form is

while (<condition holds>)
<statement; or {groupl}>

Using a while-loop in conjunction witecanf , one can process a long list of numbers

#include <stdio.h>
#include <stdlib.h>

main()
{
int i, x, sum, count;
sum = O;
count = 0;
while (scanf ("%4d", & x) == 1)
{
sum += X;
++ count;
}

printf ("Sum of %d numbers is %d\n", count, sum);

Sample run (the above program issinc)

% gece s.c

% a.out

345

16

CTRL-D

Sum of 5 numbers is 19

T

28

Note how to signal end-of-data:
| CTRL-D for end-of-data |

(12.1) More about while-loops.For example, here is an inefficient way to compute quotiedt an
remainder using a while-loop.

/* piece of code: quotient and remainder dividing n by d,
* assuming d > O

Let us simulate this code witth= 13 andn = 100.

T r>=d47
100 1

87
74
61
48
35
22

~NOo O W= OQ
O R, B R, R, B -

quotient 7, remainder 9.
Example. Supposen andn are integers, angh > n > 0.

int x,y,2;

{
z=3x%hYy;
X =y;

y = z;

}

29

Try m = 165,n = 24.

X y z
165 24 21
24 21 3
21 3 0
3 0

13 If-statements and conditions

(13.1) Conditions and if-statementsAn if-statement has the form (mind thidDENTATION)

if (<condition>)
<statement; or {group}>

and --- optionally ---
else
<statement; or {group}>

The condition must be in parentheses.
[if (<condition>) ... |
Programming languages usually use the word ‘then.” C doe$he condition is in parentheses
and ‘then’ is understood.
Statement or group of statementst is best practice to use curly bracketsvays,as otherwise
one gets into a mess. (If | forget to do so, remind me.)

if (x==1)
{
printf ("hello\n");
}
else
{
printf ("goodbye\n");
}

Conditions are converted to integers. In a.out the conditionar gc == 2 is tested and an
integer produced: 1 for true and O for false. More generalhy integer value can be used as a
condition; nonzero is treated as true and zero as false.

Complex if-statements The basic ‘if-statement’ relations are

They can be grouped into more complex statements using

30

&& for ‘and,’
|| for ‘or,’ and
! for ’not.’

For example, to test if a 4-digit year is a leap-year,

if (yy % 400 == 0 || Cyy % 4 ==0 && yy % 100 !'= 0))

Every fourth year is a leap year, except for centuries; ef@rgth century is a leap year.
More complex conditions can be constructed with
&& || !
for and, or, not. TheDOUBLE ampersand and double bar are important; single ampersand an
single bar have a different meaning.
For example, supposgy represents a year, including the century, not just the astdigits.
According to the Gregorian calendar, a leap year is

e divisible by 4,and
e either is notdivisible by 100or is divisible by 400.

Meaning that only one century in 4 is a leap-year; so on aectiag year is

397
360——
400

days long, apparently a good approximation.
This can be expressed in C:

. int leapyear, yy;

leapyear =
vy h 4 == &&
(yy % 100 !'= 0 || yy % 400 == 0)

b

if (leapyear)

Why the parentheses? Because | don’t remember the evaluatem(an extension of the rules
for arithmetic operations).

31

14 Nested if-statements and indentation

There is an ambiguity whenf -statements are combined.

if (A)

if (B)
C;
else
D;

In this example, thel se can be interpreted as either being when A is true and B fatsghen
A is false. The former is correct. Thus the above is equivdten

if (A)
{
if (B)
C;
else
D;

and if you want the other, you must use braces

if (A)
{
if (B)
C;
+
else
D;

Frequently one applies testg, C. . . in succession.

if (A)
B;
else
if (C)
D;
else
if (E)
F;
else
G;

32

If A'is true, do B. If A is false and C true, do D. If A and C are faksed E is true, do F. Else do
G.
To avoid excessive indentation, | prefer not to indent is ttase:

if (A)
B;

else if (C)
D;

else if (E)
F;

else
G;

15 Array initialisation

In C, it is possible to ‘initialise’ variables when they arectiged.

It is not always a good idea to initialise variables in this wa. It is most useful for creating
tables of data.

For example, one can create an array giving the number ofidaech month (not a leap-year)
as follows

int month_length[12]
= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

The curly braceand the semicolonare required.
In fact, when array initialisation is used, it is not necegsa give the size of the array:

int month_length[]
= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

This is dangerous because the array size is not immediaielgws.
Similarly

char hello[] = {’H’,’e’,’1°,°17,°0°,°\0’};

defines a character string "Hello”. One can also write

char hello[] = "Hello";
or
char hello[6] = "Hello";

33

Again, one can define abbreviated names for the days of thie wee

char * weekday[7] = {"Mon","Tue","Wed","Thu","Fri","Sat","Sun"};

This notation is like the ar gv[] notation.
In class we shall write a program converting date to day ofkwee

16 Day of week program

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

int dd, mm, yy, leapyear, century_adjustment, result;

char * weekday [7] =
{"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday","Friday","Saturday"};

char * month[12] =

{"January","February","March","April","May","June",
"July","August","September","October","November","December"};

int month_offset[12] =
{0’3,3’6,1’4,6’2’5,033’5};

century_adjustment = 6; /* for 21st century */

dd = atoi (argv [1]);
mm = atoi (argv [2]);
yy = atoi (argv [3]);

/*
* ASSUMED: 0 <= yy <= 99, simplifying
* the calculations

*/
leapyear = (yy % 4 == 0);
result = dd + month_offset[mm-1] + yy + yy/4 + century_adjustment;

if (leapyear && mm <= 2)
result = result + 6;

34

result = result % 7;

printf("%s, %d %s %02d\n", weekday[result], dd,
month[mm-1], yy);

17 2-dimensional arrays

Matrices should be represented using 2-dimensional ar@gdiows this. The declaration should be
(for an array of doubles)

double a [3][4];

defines & x 4 matrix.

We would think of the above array as consisting of 3 rows, @a@h containing 4 elements.
C treats a 2-dimensional arraf 3] [4] as an array of 3 1-dimensional arrays, each containing 4
elements. The entire array is kept in a single block of menfasysuala contains the address where
the block begins).

Size of a 2-dimensional array.For exampledoubl e a[3] [4] . It consists of 3 arrays each
containing 4 doubles: 3 blocks dfx 8 = 32 bytes. The size i8 x 32 = 96.

Indexing. General array element is indexeda|si | [j], where0 < ¢ < (no. of rows) and
0 < j < (no. of columns).

The addressad[i][]] is

starting address of a +
i * (size of a row) +
j * (size of each entry)

starting address of a +
(i1 * (no. of columns) + j) * (size of each entry)

For example, given
double al[4][5];

Suppose a starts at address 1000. Then
a[2] [3] starts at

1000 + (2 * 5+ 3) * 8
= 1104.

Generally<name> [<r ows>] [<col utmms>] . Thewidthis the number o€olumnsand the
heightis the number ofows. Hence

(name) [(rows)][(columns)]
(name) [(height)][(width)]

35

Example. Program to read
mmn dg---Am—1,n—1

into an array, and print it.
Printf format ‘g’ This code uses ‘g’ format rather than ‘f” The ‘g’ format adle scientific
notation to be used where necessary, but generally prodloessmplest output.

#include <stdio.h>
#include <stdlib.h>

main (int argc, char * argv[])
{

int i,j,m,n;

double a[10][10];

scanf ("%d %d", &m, &n);

if (m> 10 || n > 10)

{
printf("%s: dimensions %d %d too large\n",
argv([0], m, n);
exit (-1);
}

for (i=0; i<m; ++i)
for (j=0; j<m; ++j)
scanf ("%1f", &(alil[jl));

printf ("%d %d\n", m, n);
for (i=0; i<m; ++i)

{
for (j=0; j<n; ++j)
printf ("%8g", alil [j1);
printf ("\n");
}
}

Multiply column vector by matrix on left. The following routine does this.

#include <stdio.h>
main()
{
double a[10] [10], x[10], y[10], sum;

36

int m,n;
int 1i,j;

scanf ("%d %d\n", &m, &n);
for (i=0; i<m; ++i)
{
for (j=0; j<n; ++j)
{
scanf ("%1f", &(alil[j1));
}
}

for (j=0; j<m; ++j)
{

scanf ("%1f", &x[j1);
}

printf("Ax: ");

for (i=0; i<m; ++i)

{
sum = O;
for (j=0; j<m; ++j)
{

sum = sum + ali][j] * x[j];

}
y[i] = sum;

}

for (j=0; j<n; ++j)
printf(" %6g", y[jl);
printf ("\n");

data file d:

W NP W

a.

3

Q0 o1 N
O O W

-2 1

out < d:

Ax: 2 8 14

37

18 Functions and subroutines

A C program has the following general structure

#include etcetera

main (with or without command-line arguments)

{

declare all variables used (int, char, etcetera)

perform calculations

}

The calculations involve arithmetic computations, eticetand certaifiunctions or routinesuch
asatoi (), scanf(), printf(), which make the work a lot easier. It would be almost im-
possible to write long programs without being able to writie own functions and routines.

A C program would then look like

#include etcetera

<function or routine A> (<arguments>)

{

... etcetera ...

}

<function or routine B> (arguments)
{

... etcetera ...

}

...etcetera...

main (with or without command-line arguments)

{

declare all variables used (int, char, etcetera)

perform calculations

}

Now the calculations imai n() can use the functions and routines. For example, we can avrite
function which calculates thgcd of two numbers. It has twargumentsresembling the arguments
tomai n() .

38

int gcd (int n, int m)
{

int x,y,z;

X = n;

y = m;

while (y > 0)

{

Z

XhY;
Vs

zZ;

X

y
}

return X;

This is afunctionwith two integerargumentsvhich returns an integefalue

#include <stdio.h>

int gcd (etcetera)
{ as above }

main ()
{
int n,m,g;
while (scanf ("%d %d", &n, &m) == 2)
{
g=gcd (n, m);
printf ("gcd (%d, %d) is %d\n", n, m, g);
}
}

Sample session:

% gcc g.c

% a. out

12

ged (1, 2) is 1

1001 1261

gcd (1001, 1261) is 13
1261 1001

gcd (1261, 1001) is 13
64 192

39

gcd (64, 192) is 64
CTRL-D
%

e This gcd function seems to be written the same wayesn() .

It is, except for that nt at the beginning, and it includesr&t ur n statement which returns
the value oi.

e Why doesn’tmai n() havei nt or something in front of it?

It should. In the old days it didn’t: I'm breaking some contien. Leaving it out doesn’t seem
to do any harm.

e Scanf () returns a value, the number of items read. Does that meanf () is a function?

Yes.

e What aboupri ntf () ? Does it return a value?

No, printf is aroutine,not a function.

Here is another example of a function:

int is_leap_year (int yy)
{
if Cyy % 4 '=0)
return O;
else if (yy % 100 !'= 0)
return 1;
else if (yy % 400 != 0)
return O;
else
return 1;

So we come to routines. The only difference between routmesfunctions is that a routine
begins with the keywordoid. This indicates that nothing is returned. For exampjeeak() is a
routine:

#include <stdio.h>

void speak (int hello)
{

40

if (hello !'= 0)

printf ("hello\n");
else

printf ("goodbye\n");

main()
{
speak (1);
speak (0);
}

A last example illustratesecursion, where a routine calls itselHow it works will be explained
later.

int factorial (int n)
{
if (n==20)
return 1;
else
return n * factorial (n-1);

Three more questions.

e Can onewrite a function inside another? The answer is ‘yes, but it is wessary.

e Can oneusea function or routine A in some other one B, not justi n() ? Answer: yes, SO
long as A appears before B in the program.

e What if A is written after B? One can includefanction prototypdor A, before B.

A function prototype is just a function definition with thedo(the part between curly braces)
replaced by a semicolon.

int A (int n);

void B ()
{
int x;
x= A (5);

main()

41

BO;

TEMPLATE for a function or routine
In routines<t ype>isvoi d
In functions, the calculations include
r et ur n statements

<type> <nane> (<ar gunent s>)

{

<vari abl es>;
<cal cul ati ons>;

19 Simulating subroutines and functions

Simple routines are easiest to understand by tracinggireulating) their action on a simple piece of
data. One makes a table giving the values of all variables,cofumn for each variable, and enters
values in the order in which they are produced by the progr&or. example, trace the following
program and say what the routine does in general.

#include <stdio.h>

int xxx (int n)
{

int i,x;

x =1;

for (i=0; i<n; ++i)
{

X = X + X;
}

return X;

3

main()

{
printf ("xxx(5)==Yd\n", xxx(5));
}

Simulation:

42

5
1
0
2
1
4
2
8
3
16
4
32
5
returns 32
Prints
XXX(5) ==32

Clearly the function return®®. Another example

#include <stdio.h>

int yyy (int n)

{
int i, x, s;
s = 0;
x = 1;
for (i=0; i<n; ++i)
{
s = st+x;
= x+2;
}
return s;
}
main()
{

printf ("yyy(5)==%d\n", yyy(5));
}

| X s n
5
0
1
0
1

43

1
4
5
2
9
7
3
16
9
4
25
11
5

returns 25
prints
yyy(5) == 25

‘Clearly’ the function returns:?. (Summing the odd integers produces the perfect squares.)

20 Gauss-Jordan elimination

This is not examinable.Gauss-Jordan elimination applies operatiswap, scal e, subtract
to the rows of an array to bring it into so-calleetluced row-echelon fornif the matrix is an aug-
mented matrix representing a system of linear equatiorssehof all solutions can be derived from
the reduced matrix. If the matrix is anx 2n matrix consisting of am x n matrix A followed by the
n X n identity matrix: schematically

Al

then if A is invertible, the reduced matrix will be
I HA‘l.

If, in the reduced matrix, the left-hand side of the bottonv i® zero, therA is not invertible.

#include <stdio.h>

void swap(int i, int k, double a[][20])

{
double x;
int j;

for (j=0; j<20; ++j)
{

44

x = alil [1;
alil[j] = alk][j];

alk]l [j1 = x;
+
}
void scale (int k, double a[][20], double c)
{
int j;
double x;

for (j=0; j<20; ++j)
alkl[j] = ¢ * alk]l[j];
}

void subtract_multiple (int k, double a[][20], double c, int i)
{

int j;

double x;

for (j=0; j<20; ++j)
alil[j1 = alil[j] - c * alk] [j];
}

void reduce (int m, int n, double al][20])
{

int i,j,k,r;

k = 0;

for (j=0; j<n; j = j+1)

r = -1;
for (i=k; i<m && r<0; ++i)
if (alil[j] !'= 0)

r = i;

if (r > 0)
{
swap (k, r, a);
scale (k, a, 1/alk][jl);
for (i=0; i<m; ++1i)
if (i '=k)
subtract_multiple(k, a, ali]l [j], 1i);
++k:

b

45

main()

{
int i,j,m,n;
double a[10] [20];

scanf ("%d %d4d", &m, &n);
for (i=0; i<m; ++i)
for (j=0; j<n; ++j)
scanf ("%1f", &(alil[j]));

reduce (m,n,a);

printf ("Reduced matrix\n");
printf ("%d %d\n", m, n);

for (i=0; i<m; ++i)
{
for (j=0; j<n; ++j)
printf (" %8.5g", alil[j1);
printf ("\n");
}
}

Sample input

3 6

12 3100
23 1010
11-1001

Reduced matrix

36
1 0 0 4 -5
-0 1 0 -3 4
0 0 1 1 -1

Another input (matrix not invertible)

36
123100
456010

46

789001

Reduced matrix

36
1 0 -1 0 -2.6667 1.6667
-0 1 2 0 2.3333 -1.3333
0 0 0 1 -2 1

21 Gaussian elimination

We are introducing Gaussian elimination with partial pivoting for the sake of variety — as an
alternative to Gauss-Jordan elimination.

The idea is to illustrate how one writes linear algebra code irC.

Specialists in numerical linear algebra do not favour Gaasdan elimination.

The difference between the two procedures is as follows.

e Gauss-Jordan elimination applies to matrices of any sraeging them to reduced row-echelon
form.

e When applied to the augmented matrix for a sethahdependent linear equations, Gauss-
Jordan elimination reduces the augmented matrix fullyifepathe identity matrix on the left
and the solution in the rightmost column. Schematically,

AllB — I||X.
whereX = A~'B.
¢ In Gauss-Jordan elimination, the rows are scaled so thed#&glements are 1.

e Gaussian elimination, applied to the augmented matrix gyistem ot independent equations,
brings the first, columns into upper triangular form. Schematically

AllB — U||lY
and the solutionX = A~'B = U~1Y is calculated byack substitution.

e Gaussian elimination has a policy pértial pivotingwhich swaps the rows around to improve
accuracy.

The idea is keep fairly large numbers (large in absolutes)ada the diagonal, to avoid inflating
errors by dividing by small numbers.

¢ In Gaussian elimination, the diagonal elements are noedcal

Thus, Gauss-Jordan elimination would reduce
3 6 9
2 5 8

47

to

1 0 -1
01 2|

3 69
01 2

The answer is not stored in the rightmost column, but can loelkesied byback substitutionThat is,

Gaussian elimination would produce

y =2 from bottom row
3xr+12=9, z=-3/3=-1

With Gaussian elimination, the diagonal entries are ndesic@ make them. Partial pivoting
means ensuring that the diagonal entries are as large ablpassabsolute value.
For example,

Since2 > 1, the rows are swapped.

and we finish with
2 5 8
0 —1/2 —1

Here is another example. SolyeX = B, where

1 2 3 2
A=14 5 6 andB is 5
7 8 10 9

1 2 3 2 pivot

~
(09)

10

©

clear column

7 8 10 9
0 3/7 2/7 -1/7 pivot
0 6/7 11/7 5/7

7 8 10 9
0 6/7 11/7 5/7

48

0 3/7 2/7 -1/7

7 8 10 9
6/7 11/7 5/7
0 0 -1/2 -1/2

(@)

back substitution

z =1
6y/7 + 11/7 = 5/7
y = -1
7x -8 + 10 =9
X =1

You will be askedto apply back-substitution in the next programming assigmmThat is, you
will be writing a routine

void back_sub (int n, double u[10] [10], double y[10], double x[10])
{ ...}

whereu is upper triangular and you solver = y.
The formula is applied fof = n — 1,...,0, in descending order. Sinaeis upper triangular,

uijZOifj<’L.,SO
n—1
Z ul-jxj = bl
Jj=0
becomes
n—1
Z Uz‘jl‘j = bZ
Jj=i
or, in other words,

n—1
b= Y wi

Uqg

X

22 C has call-by-value

Consider

#include <stdio.h>
void print (int n)
{
printf("Integer... %d\n", n);
++n;
printf("Integer... %d\n", n);
}

49

main()

{
int m = 3;
print(m);
print(m);

}

the routine argument is like aninitialised local variable.Compiling and running the program:

%gcc p.c
% . out

I nt eger. ..
| nt eger. ..
| nt eger. ..
| nt eger. ..
%

A WwWhrAwW

That is, the value omis copied ton, andn is local to the routine. The changernqlocal) does
not affectm(in the calling routinerai n). If we change therai n() routine to

main()
{
print (3);
print (3);
}

we get the same output.
There are 5 recognised ways of argument-passing (parapestsing)

e Call by value

Call by reference

Call by result

Call by value-result

Call by name

The last three are irrelevant to us: the last is bizarre, wewiin the 1960s language Algol and
in the ‘funarg problem’ in Lisp.

Actually, the#def i ne feature in C, which shouldever be used except to give names to con-
stants, if used with arguments has all the difficulties oFbgtname.

In call-by-reference, the subroutine argument is idehtictln the argument passed, i.e., occupies
the same memory location. This was the natural way when &oktras invented, and in the early
compilers it had very odd effects.

Call-by-reference is easily simulated in C using pointers.dhall revise the program to simulate
call-by-reference.

50

#include <stdio.h>
void print (int * n)
{
printf("Integer... %d\n", * n);
++ (*x n);
printf("Integer... %d\n", * n);
}

main()

{
int m = 3;
print(&m);
print(&m);

}

Running it,

%a. out

I nt eger. ..
| nt eger. ..
| nt eger. ..
| nt eger. ..
%

b~ b~ w

In most (or all?) languages, the constant 3 would be storeal imemory location when the
programa. out was loaded into central memory, and whenever 3 was used prolgeam, the value
would be taken from this location. In some early Fortran cibeng, the following could happen —
illustrated as if it would happen in C, that is, if C heall-by-reference

#include <stdio.h>
void print (int n)

{
printf("Integer... %d\n", n);
++n;
printf("Integer... %d\n", n);
}
main()
{
print(3);
print(3);
}

51

%a. out

I nt eger. ..
| nt eger. ..
| nt eger. ..
| nt eger. ..
%

ab~r b~w

The programming language PL/lI had a mixture of call-bynefiee together with ‘automatic
conversion’ which made odd things happen. If you weren'y\aareful, subroutine calls would be
call-by-reference sometimes and call-by-value othergime

Summarising

C has call-by-value. Subroutine arguments are initialleed
cal variables.
Exercise. gcacompiles the following program, but with warnings.

#include <stdio.h>

void print (int * n)

{
printf("Integer... %d\n", * n);
++ (*x n);
printf("Integer... %d\n", * n);

}

main()
{
print(3);
print(3);
}

Run it, and try to explain what happens.

23 Subroutine array arguments

An array can be passed to a subroutine or function withouadag its size.

void negative (int x[], int count)

{
int i;
for (i=0; i<count; ++i)
x[i]l = - x[i];
}

52

main()

{
int a[3] = {1,2,3};
int 1i;

negative (a, 3);

for (i=0; i<3; ++i)
printf (" %d", alil);

printf("\n");

It is necessary to pagount to the routine, since the size of the array is not otherwisdé-av
able.

The value ofa is passed to the routine.

This value is the starting address of areay

Therefore, in the routine, the valuexfis where is where the arraybegins.

x[1] isthe integer storedl(integer) places beyond the start of areay

¢ In other words, every referencexdi | in the routine actually refers @[i | .

In other words:

Array arguments are effectively caII-by-reference‘

Remarks.

e This is very economical, since it avoids copying large asray

e The argumenx can also be defined simply as a pointer:

void negative (int * x, int count)

would work just as well, and is common practice.

e Usually a subroutine argument of typlar =+ is intended for character strings:

void reverse_string (char * s)

Count is not needed, because end-of-string is marked\y .

53

24 Global variables

Data is normally passed to subroutines and functions byiggaasguments. Sometimes it is cleaner
to useglobal variableswhich are ‘visible’ to routines and functions.

#include <stdio.h>
#include <stdlib.h>

double a[10][10], x[10], y[10];

int matvecprod (int m, int n)

{ ... }
main()
{ ... }

Becausa, x, y have been declared above the routimasvecpr od() andmai n(), they are
‘visible’ to both and it is not necessary to pass them as aggusn The same was not done with
n; it could have been.

This is an example oflobal variables. The variables declared within the routinesleceal to
those routines. They cannot be seen or modified from outs&hketroutines. This is true also for the
mai n() routine.

Data may be communicated througlobal variables.

#include

char * day[7] = {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};

int aaa (...)

{ int n=0; ... %}
main (...)

{ int n=1; ... %}

e Bothaaa andmai n can use the arragay| | ; itis called aglobal variable
e The variables) in aaa andnai n arelocal variables,and are independent of each other.
e This gives 3 kinds of variable.

e global,
e |ocal, and

54

e routine argument.

e Alocal variable can be initialised as shown. Itis initialiseach time the routine is called: once
for mai n, perhaps often foaaa.

e The global variablelay|[] is initialised once, of course.

The global variables arstaticc meaning that they ‘last’ as long as the program is runninge T
local variables ‘last’ as long as the routine is running. Wttenroutine ends, their value is lost, and
if the routine begins again, the variables are new, whethaobthey are initialised.

This will be explained fully later.

There is another possibility. It is possible for a routineiakle to be declared ‘static.’

void aaa (...)

{
}

static int x = 0O;

The variabler doedast throughout the program. It is initialised to 0. It hasltfetimeof a global
variable and thecopeof a local variable, meaning that it is invisible outside thatineaaa.

Summary
Scope Lifetime Initialised how often?
lasts for a sinale run of Initialised (if at all) at
local private to routine . 9 start of every run of
the routine .
ible f [l Tasts for entire run o the routine
global aCC(.ESSIb ¢ from a initialised once
routines the program
routine argument private to routine single run start of every run
stapc local private to routine lasts entire program | intialised once
variable

25 String processing

Whenchar =+ isused as atype, character strings are almost always gdetitht is, arrays in which
" \0’ indicates end of string.
Here are some useful functions.

e intstrlen (char * s) in string.h returns the length of

e int strcomp (char * x, char * y) compares two strings. It is used to sort lines of text. It
behaves in the following peculiar way.

e If = comes beforey in lexicographical (dictionary) order, thest r conp() returns a
negative number. Almost any negative number is possible.

55

e If x andy are equal as strings (they have the same length),shernp() returns 0.

e If x comes aftey in lexicographical (dictionary) order, thext r conp() returns a posi-
tive number. Almost any positive number is possible.

Mnemonic: itisas ifstrcnp() returnse — .
Thisis alsoinstring. h

e char * fgets (char * buffer, int len, FILE * file) reads up to end-of-line (including\n’),
or end-of-data, or up tben characters ended with\O’ , whichever comes first.

This prevents characters being stored beyond the end ofiffex fbuffer overflow’).
Thisisinst di o. h.

e snprintf (char * buffer, int len, char * format, item ...) formats the items for printing like
printf (), butformats them into the stringuf f er rather than printing to terminal.
Again,| en is there to prevent buffer overflow.

Thisisinst di o. h.

When processing text, the following routine is helpful witthdeing absolutely necessary. It re-
moves the newline from a string.

This is useful becaudeget s() usually includes newlines, but not always. It's best to nske
all newlines are deleted.

#include <string.h>
void delete_newline (char * s)
{
int last = strlen (s) - 1;
/* last character before ’\0’ */
if (last >= 0 && s[last] == ’\n’)
s[last] = ’\0’;

Here is another method, which produces the same result gamothe newline can only be at the
end of the string.

void delete_newline (char * s)

{
int i;
for (i=0; s[i] '= °\0’; ++i)
{
if (s[i] == ’\n’)
{
s[i] = ’\0’;

56

return;

Here is a long, almost useful, example. It reads lines of taeaking them into words (nonblank
strings separated by blanks).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
/* ctype.h: for isspace(), etcetera */

void del_nl (char * s)

{
/*
* delete newline
*/
int i;
for (i=0; s[i] '= °\0’; ++i)
{
if (s[i] == ’\n’)
{
s[i]l = ’\0’;
return;
}
}
}

57

The processing is done withirai n() . First, here is aoutlineof whatrmai n() does; parts are
left out, with comments to explain them.

main()
{
/*
* get max_len off the command line
*/

max_len = atoi (argv[1]);
(25.1) The outermost while-loop controls reading of text.

while (fgets(buffer, 200, stdin) != NULL)
{

i= 0;

(25.2) The next-outermost loop controls reading of the bufferidlde: will index the beginning of
words,

while (buffer([i] != ’\0’)
{
/%
* increment i until a non-space character is
* found, or end-of-string

*/

/*
* if not end-of-string, then
* another word begins at i

*/
(25.3) The if-statement below controls processing of the next viotte buffer.

if (buffer[i] != ’\0’)
{
/%
* copy word to word buffer. Stops when j
* is at a blank or end-of-string

*/

while (buffer[j] != ’\0’ && ! isspace (buffer[j]))
{
}

/*
* Calculate the potential output line length

58

* if the word is printed on same line

*/

/*

*

If not too long, print word on same line,
else start a new line. No provision is
made for breaking long words, so lines
* longer than max_len are still possible.

*/

* %

}
This ends the part controlled by the if-statement introduoe§25.3.
} /* look for next word */
This ends the part controlled by the while-loop introduaeds.2.

} /* read next line */
/* print an extra newline */
printf("\n");
}

This ends the outermost while-loo§?6.1) and the main routine. That is an outline of the main
program: the actual main program is below.

main(int argc, char * argvl[])

{
char buffer[200], word_buffer[200];
int i,j,k, max_len, line_len, word_len, new_len;

/*
* get max_len off the command line
*/
max_len = atoi (argv[1l]);
/*
* process text line-by-line
*/

line_len = O;
while (fgets(buffer, 200, stdin) != NULL)
{

del_nl (buffer);

i=0;

59

while (buffer[i] != ’\0’)

{
/*
* increment i1 until a non-space character is
* found, or end-of-string

*/
while (isspace (buffer[i]))
{
++i;
}
/*
* if not end-of-string, then
* another word begins at i
*/
if (buffer([i] != ’\0’)
{
word_len = O;
=1
k = 0;
/*

* copy word to word buffer. Stops when j
* is at a blank or end-of-string.

*/

while (buffer[j] != ’\O0’ && ! isspace (buffer[j]))
{

word_buffer[k] = buffer[j];

++7;

++k ;

3

/*
* k is the number of non-blanks transferred.

x/
word_buffer[k] = ’\0’;
word_len = k;
if (line_len == 0)

new_len = word_len;
else

60

new_len = line_len + word_len + 1;

if (new_len <= max_len)
{
if (line_len == 0)
printf("%s", word_buffer);
else
printf (" %s", word_buffer);
line_len = new_len;
i=13;
}
else
{
printf("\n%s", word_buffer);
line_len = word_len;

/*

* The word printed was in buffer[i..j-1].
Therefore the next word, if any,
* begins somewhere after j.

*

x/
i=7j;
}
}
} /* search from i for another word ... */
} /* read the next line */
printf("\n"); /* add a final newline */
}
Sample run:
file tt:

We know that you highly esteem the kind of Learning taught in those
Colleges, and that the Maintenance of our young Men, while with
etcetera

%ha.out 25 < tt

We know that you highly
esteem the kind of
Learning taught in those
Colleges, and that the
Maintenance of our young
Men, while with etcetera

T

61

26 Pointers and arrays
e C hagpointers. A variable can contain the address of some piece of dateentitan containing
data, it‘points’ to the data.
e To declare a pointer, use *:
int * a, b, * c;
definesa andc to be of typepointer toi nt , andb to be of type nt as usual.
¢ Notice that each * appliesnly to onevariable, even in a list of variables.
¢ Whenx is a pointer variable of typdoubl e, for example, then
*x X
is the value of the double-precision number whose addresis
e C has a very odd convention:
arrays are pointelks
and
array indexing can be used with pointers
e In other words, ifa is defined as an array, saloubl e a[15], gccreserves a block of
memory (5 x 8 bytes) to hold the array, and ssarting addresss stored ina.
e On the other hand, 1 is declared as a pointer, sdpubl e * b, thenb can be treated as an
array, but it could be in a random piece of memory: no memorgssrved.
e Usually,
char * a
is used whera is a character string.
Example.

char * argv[]

declaresar gv to be an array of character strings.

argv[1] [2]

would be the 3rd character (count begins at Gdiogv[1] .
Again, in

62

int a[10], *b, c[9]

thevaluesof a, b, ¢ will be addresses of integerBut storage will be reserved fa, c; while
b[14] is accepted by C, it refers to some random piece of memory.

Also, C does not remember array bound$:14] is accepted, though it is outside the area re-
served fora.

Summary.

e Use asterisks when declaring pointers

int a[12], b, *c, d[15], xe, f, *g;

an integer array
an integer

pointer to integer
an integer array
pointer to integer
integer

g pointer to integer

H 0 & 0 T P

¢ In the above examples, ¢, d, e, andg are all pointers Only: andd have memory reserved for
them. You can assign an array or a pointer to a pointer,

cC = a,
g = C;
but you cannot assign anything to an array

a = d;
is impossible.

Use an asterisk to get the value stored at an address:

*e is the value stored at e
*a is the value stored at a. It is the same as al[O].

Pointers are used to implement ‘call by reference.” Seewelo

NULL (declared inst di 0. h) is the ‘null pointer value. For example, it is returned by
f get s() when end-of-data has been reached.

When an argument is a pointer, you pass it an address, such as in

scanf ("%d %d", &m, &n);

e Remember that under the rules of C, array arguments are eéycicall by reference.’

Using pointers for call-by-reference.

63

#include <stdio.h>
#include <ctype.h>
void count_alpha_numeric (char * s, int * alpha, int * digits)

{

int 1i;

* alpha = * digits = 0;

for (i=0; s[i] !'= ’\0’; ++i)
{

if (isdigit (s[i]))
++ * digits;
else if (isalpha (s[i]))
* alpha = * alpha + 1;
}
b

main()
{
int a, d;
char s[] = "Oalb2___cdea ";

count_alpha_numeric (s, &a, &4);
printf("%d alphabetic, %d digits\n", a, d);

27 Memory allocation, casts, and strings
There are 3 functions (usg | i b. h) we can use for getting areas of storage:

e malloc (), free () notcovered inthese lectures.

ecalloc (int n, int s) reserve x s bytes of memoryinitialises them to 0, and
returns the address where they start.

There is a built-in function (sort of functiorsjizeof (type)which returns the number of bytes of
storage occupied by an object of the given type.

To castan expression is to convert it to another type. This is dorik pointers to make types
match. Acastis a type description in parentheses.

For example(doubl e) 22 converts the integer expression to a double. More aboul:tas

64

Suppose you want an array@idoubles. Here is a function which does this.

double * array (int n)

{
double * a;
a = (double *) calloc (n, sizeof (double));
return a;

}

calloc(int n, int s) obtains a block of: x s bytes of free storage,

initialised to all zeroes,

and returns the address of the block.

The type returned by theal | oc() function is the most general pointer type possiblei d

* .
e Hence, to satisfy the rules of C, it is necessary to ‘cast’ theocorrect array type.

(27.1) Recall the 4 string-handling routines already mentioned

#include <string.h>
int strlen (char * str)
void snprintf(<buffer>,<size>,<format>,<item>,...,<item>)
int strcmp (char * a, char * b)
int strncmp (char * a, char * b, char * len)
/* compares up to len characters */

Here is a program which copies strings to an array and piietsitin reverse order.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void decr (char * str)

{
int len = strlen (str);
if (len > 0 && str[len-1] == ’\n’)
str [len-1] = °\0’;
}

/*
* copy_string allocates storage for a copy
* of the string, uses snprintf() to copy
* the string to that storage, and returns

65

* the copy.
*/
char * copy_string (char * x)
{
int len = strlen (x);
char * copy;

copy = (char *) calloc (1, lent+l);
snprintf (copy, len+1, "%s", x);
return copy,

main ()

{
char * 1ine[1000];
int count,i;
char buffer[200];

count = 0;
while (count < 1000 && fgets (buffer, 200, stdin) != NULL)
{

decr (buffer);

line[count] = copy_string (buffer);

++count;
}
/* print in reverse order */
for (i=count-1; i>=0; --i)
printf ("%s\n", line[i]);
}

27.1 2-dimensional arrays

We have created 1-dimensional arrays with no difficulty. Fdumensional arrays are a lot more
tricky.

double a[10][10];

is a typical 2-dimensional array definition. How can we usafeos to produce arrays of flexible
sizes? First of all the type must describe an array of arr&ydoables. Translating ‘array’ into
‘pointer’ we see that the appropriate typalisubl e * =

double ** c;

66

Can we create like this?

¢ = (double * *) calloc (m, n * sizeof (double));

No. Suppose that, = n = 10 and c is allocated 100 doubles beginning at address 40, kapn T

c = 40
c[0] =0
c[o] [0] = 7?77

What we must do is create 10 separate arrays of size 10, andaniat@an array of 10 pointers,
giving the start of each 1-dimensional array.
Here is one way to do it.

¢ = (double * *) calloc (10, sizeof (double *));

c[0] = (double *) calloc (10, sizeof (double *));

c[1] = (double *) calloc (10, sizeof (double *));
etcetera

Then c¢ is an array of ‘rows,’ and each row is an array
of 10 doubles. ©So for 0 <= 1i,j < 10,
c[i]1 [j]
is the j-th entry in the i-th row of c.

These ideas lead to a matrix creation function

double * * mat (int m, int n)

{
int i;
double * * mt;
mt = (double * *) calloc (m, sizeof (double *));
for (i=0; i<m; ++i)
{
mt[i] = (double *) calloc (n, sizeof (double));
}
+

In practical terms, memory allocation is a bit expensiveiimetand in space. Here is another
version of the same function, more efficient because it 2ged | ocs(), notm + 1.

double * * mat (int m, int n)

{

67

int i;
double * * mt;
double * pool;

mt = (double * *) calloc (m, sizeof (double *));
pool = (double *) calloc (m*n, sizeof (double));
for (i=0; i<m; ++i)
{
mt[i] = & (pool [i *xn]);
}
}

28 Structures

28.1 Structures

It is possible to collect data into packages, called ‘strreg.” For example, the following declaration
would be intended for complex numbers

struct {double re, im;} z;

The variablez would be stored in 16 bytes, and its two components — whicldatble-precision
numbers — would be referred to as

zZ.re
Z.1im

respectively. This ‘strucfetceterd’ is a new kind oftype. Usually, one introduces the type via
typedef.

typedef struct { double re, im; }
COMPLEX;

COMPLEX x;

Note: the components of st r uct are usually calledields

28.2 Equality, assignment, routine arguments

A structure is a kind of generalised array, in that it hasedléht elements, not too many, each with a
different name. The C convention in which arrays are jushiges does not extend to structures.

68

void add (COMPLEX a, COMPLEX b, COMPLEX * c)

{

}
COMPLEX a,b;
a.re = a.im = 0;
b = a;

If ‘add’ is to add a and b and return the result in anastbe a pointer. It is optional whether a
and b are pointers: here they aren't.

Best practice. There is no virtue in ‘call by value’ structure argumentdsibest to use pointer
arguments.

Allocating structures. Thesi zeof pseudo-function can be used.

COMPLEX * z;
z = (COMPLEX *) calloc (1, sizeof (COMPLEX));

Why should+ be needed then not needed? Think about it. Suppose th@OWfeL EX structure
has size 16 (which is almost certainly true). This says:calie 16 bytes, and return thedress—
so the cast converts to ‘pointer to COMPLEX’ tsiteofreturns the size of a COMPLEX object, 16,
not the size of a pointer, which is 4 or 8.

28.3 Matrices

Interlude. Pointer notation. If x if of type STR * whereSTRis a structure, then to access field
say, in the object addressed »ythe basic notation is

(xx).n

but an alternative form is preferred:

X->n

These forms are equivalent and interchangeable.
Here is a structure for matrices.

typedef { int height, width; double ** entry;}
MATRIX;

The first thing is to write a routine to create a matrix

69

MATRIX * zero_matrix (int m, int n)

{
MATRIX * mat = calloc (1, sizeof (MATRIX));
mat->height = m;
mat->width = n;
create the matrix entries as described earlier ...
. using calloc, all entries are initialised to O ...
return mat;
}

The routine returns pointer. In C, originally at least, structures could not be returnedunc-

tions.
Here is a routine to read a matrix from standard input. Ittereand returns the matrix (pointer).

MATRIX * read_matrix ()
{
int m, n, i, j;
MATRIX * mat;

scanf ("%d %d", &m, &n);
mat = zero_matrix (m, n);
for (i=0; i<m; ++i)
for (j=0; j<n; ++j)
{
scanf ("%1f", & (mat[i]l [j]));
}

return mat;

We need a routine to read an ‘augmented matrix’, storingakiedolumn in a vector.

void read_aug_matrix (MATRIX **a, VECTOR **b)
{

int m, n, i, j;

MATRIX * mat;

VECTOR * vec;

double x;

scanf ("%d %d4d", &m, &n);
mat = zero_matrix (m, n-1);

70

vec = zero_vecctor (m);

for (i=0; i<m; ++i)
for (j=0; j<m; ++j)

{
scanf ("%1f", & (x));
if (j <n-1)
mat->entry[i] [j] = x;
else
vec—>entry[i] = x;
}
*a = mat;
*b = vec;

29 The runtime stack and recursion

There are four kinds of variabléocal, routine argument, stati@ndglobal.

The local variables and routine arguments are stored onutfiténe stack.When a routine (or
function) xxx begins, astack frames created to contain all the local data (including the meiti
arguments) for the routine.

Roughly speaking, this area of memory is called a ‘stack’ bsedt can grow and shrink.

For example

main begins:

main calls a
main ‘suspends operation’
a begins with a new frame ‘pushed’ onto the stack.
a calls b:
a suspends operation
b begins with a new stack frame.

b ends
a resumes....

a ends
main resumes.. etcetera

For example.

71

int gcd (int m, int n)

{
if (n==20)
return m;
else
return gcd (n, m % n);
+
main()
{
printf ("gcd(276,42)=Yd\n", gcd(276,42));
+

The ‘staggered’ layout below is to emphasise tbke rof the runtime stack; there are several
different versions ofn andn.

Our indenting policy is: the actions of a particular run ofoaitine are headed by ‘call ...” and
terminated by ‘.. .returns’ or ‘... returns value.” Betwebgage lines they are indented a few columns.

main
calls gcd(276,42)
gecd
| m 276 n 42
| calls gcd(42,24)

m 42 n 24
calls gcd(24,18)
ged
| m 24 n 18
| calls gcd(18,6)
| gcd
| | m 18 n 6
| | calls gcd(6,0)
| | gecd
|l 1l m6no0
| | gcd returns 6
| gcd returns 6
| gcd returns 6

| gcd returns 6

gcd returns 6

main prints:
gcd(276,42)=6.

72

Here is the ‘factorial’ example.

int fac(int n)

{
if (n==20)
return 1;
else
return n * fac (n-1);
}
main()
{
printf ("3! = %d\n", factorial(3));
}
main
fac
n=3 | fac
E‘ fac
n=1| fac
n=0
return 1
return 1*1
return 2*1
return 3*2
print 6

Here is a recursive procedure which behaves oddly — remethagstatic variables behave like
global variables except they are private to the routine.

#include <stdio.h>
void printfac (int n)
{
static int x = 1;
if (n<=1)
printf ("%d\n", x);
else
{
X *= n;
printfac (n-1);
}
}
main()

{
printf("3! = ");

73

printfac(3);
}

We shall keep x on the right to emphasise that it is not in taekstrame.

main prints
3! =
main calls printfac
printfac (3)
x =3%x1 =3
printfac calls
printfac (2)
x = 2%3

]
»

printfac calls
printfac (1)
which prints x, i.e., 6, completing
the line:
3! =6
printfac returns
printfac returns
printfac returns
printfac returns
main ends

30 Conversions, casts, and pointers

C performs automatitype conversionsywhen an expression contains subexpressions of different
types.

e Strangely,char expressions are considered a kind of integer, and wheressegethey are
‘promoted’ toi nt expressions.Careful. They may or may not use sign extension, so the
promoted value can be negative.

This happens on Intel chips — on the maths machines.
It is not usually noticeable, because The usual ASCII characre between 0 and 127, and
the high-order bit is zero.

e You can get around it using thensi gned qualifier. There is a data-type
unsi gned char

which does not cause sign extension.

74

Shorts are always promoted to ints.

Floats are always promoted to doubles.

Ints are promoted if necessary to longs — this makes no diffeg on the maths machines.

When ints and doubles are mixed, the ints are promoted to dsubl
When assigning doubles to ints, etcetera

e Assigning double to float: the value is computed and rounded.
¢ Int to short and int or short to char: the high-order bits agpged.

e Doubles and floats to int: values are rounded toward zerot i$hab5 rounds to 2, and-2.5
rounds to—2.

Type castsare a way to force conversions. The notation is

(<casting type>) <expression>

For example, ifz is adoubl e, then(i nt) x is x rounded up or down to integer depending on
sign. Not sure what happens wheis out of range.
(doubl e) 2 and2. 0 are the same.

(30.1) Pointers.Casts convert expressions to a plausibly equivalent valaespecified type.

There is another place where they are very important. Adéseare 4 or 8 bytes long depending
on the machineMemory allocation functions reserve pieces of memory and return the value in a
fixed type, which used to bent , but now is a more cautionsoi d * — meaning pointer to object
of unspecified type.

To satisfy gcc, it is necessary to ‘cast’ this to the requiygxk. For example,

char * a;

a = (char *) malloc (121);

31 Files

Input/output redirection. You can arrange thatcanf () andfgets (..., stdin) readfrom
a file rather than a terminal, and makei nt f () write to a file:

ha.out < my_input
%ha.out > my_output
ha.out < my_input > my_output

75

FILEs can be declared in C (stdio.h contains the definitibtisnk).

FILE * myfile;

There are the three ‘standard’ filslin, stdout, stderr.

printf (....); and

fprintf (stdout,);
are the same, and

scanf (....); and

fscanf (stdin,)
are the same.

Apart from these, a file must penedbefore it can be read from or written to, as follows

file = fopen (<file name>, "r"); /* for reading */
file = fopen (<file name>, "w"); /* for writing */
file = fopen (<file name>, "a"); /* for appending */

f open() returns a memory addresswhere details about the file are stored; NULL if it was
impossible to open the file. A file should bsedafter use:

fclose (file);

If a file was opened for reading, it is unneces-
sary to close it, but does not harm.
If a file is opened for writing/appending and
not closed,

the updates will be lost.

You can read from a file usinigscanf () andf gets().

Note about fscanf(). It returns the number of input items assigned, which can beirféhan
provided for, or even zero, in the event of a matching faie. ufero indicates that, while there was
input available, no conver- sions were assigned; typidhlly is due to an invalid input character,
such as an alphabetic character for a ‘returned if an inpluiréaoccurs before any conversion such
as an end- of-file occurs. If an error or end-of-file occursratbnversion has begun, the number of
conversions which were successfully completed is retur(teQF is defined inst di 0. h, its value
is —1, I think.)

fgets (<buffer>, <buffer length>, <file>);

As already mentioned,get s() returns the address of the buffer, if data was read, andn®tur
NULL if end-of-data was reached.

76

#include <stdio.h>
#include <string.h>

/* program reads lines and
* prints them with an extra space.

void decr (char str[])

{
int 1i;
for (i=0; str[i] != °\0’; i = i+1)
if (strl[i] == ’\n’)
str[i] = ’\0’;
}
main (int argc, char * argv[])
{
char buffer[100];
FILE * infile;
FILE * outfile;
infile = fopen (argv[1], "r");
outfile = fopen (argv[2], "w");
while (fgets (buffer, 100, infile) != NULL)
{
decr (buffer);
fprintf (outfile, "%s\n\n", buffer);
}
fclose (infile);
fclose (outfile);
}

When reading from a named file, you caad the file more than onaesing therewind() routine.
For example, it might be necessary to count the data itemsewicd the file in order to process
them again:

/* Take the average of a list of numbers, but
* first counting them.

*/

1

#include <stdio.h>

main (int argc, char * argv[])

{

int n;

FILE * file;

double x, sum, average;

file = fopen (argv[1], "r");

sum = O;

n = 0;

while (fscanf(file, "%1f", & x) == 1)

{

sum += X;
++ n;

}

average = sum/n;

printf("%d numbers read, average is %f\n", n, average);

rewind (file);

/%
* Now you can scan the numbers
* again --- but this time you
* know the average.
*/
}

32 Multi-file compilation

You can compile a C program from several files

gcc ninth.c matrix9.c

The routines imat ri x9. c are

static MATRIX * zero_matrix (int m, int n);

static VECTOR * zero_vector (int n);

void read_aug_matrix (FILE * file, MATRIX #**a, VECTOR **b);
void print(FILE * file, MATRIX * a, VECTOR * b);

78

static void subtract (MATRIX * a, VECTOR * b, int i, double s, int j);
static void scale (MATRIX *a, VECTOR *b, int i, double s);

static void swap (MATRIX * a, VECTOR * b, int i, int j);

void reduce (MATRIX * a, VECTOR * b, MATRIX ** uu, VECTOR ** yy);
VECTOR * back_substitute (MATRIX * u, VECTOR * y);

void print_vector(FILE * file, VECTOR * x);

Thestatic keyword meangrivate to matrix9.c These routines are not meant to be ‘exported.’ In
order to use the matrix routines im nt h. c, the followingheader file should be used (it is on the
web for the ninth assignment).

matrix9.h:

typedef struct { int height; double * entry; }
VECTOR;

typedef struct { int height, width ; double ** entry; }
MATRIX;

void read_aug_matrix (FILE * file, MATRIX **a, VECTOR **b);

void print(FILE * file, MATRIX * a, VECTOR * b);

void reduce (MATRIX * a, VECTOR * b, MATRIX ** uu, VECTOR ** yy);
VECTOR * back_substitute (MATRIX * u, VECTOR * y);

void print_vector(FILE * file, VECTOR * x);

Here is a template fami nt h. c:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "matrix9.h"

main(int argc, char * argv[])
{

MATRIX *a, *u;

VECTOR *b, *y, *x;

FILE * in, * out;

/*
* Open in, out

*/

read_aug_matrix (in, &a, &b);

79

‘main

Figure 2: The life of variables

fprintf (out, "Input matrix\n");
print(out, a, b);

reduce (a, b, &u, &y);

fprintf (out,"Reduced matrix\n");
print(out, u, y);

x = back_substitute(u, y);
fprintf (out, "Solution\n");
print_vector (out,x);

/%
* etcetera

*/

33 Scope and lifetime of variables
Variables and routines have scope and variables also Hatimk.

e Scopewithin a file or a routine, below the point where the routirzeiable is introduced.

e Lifetime is a single run of the routine for local non/static variatdes routine arguments. It is
the duration of the entire program for global and staticalalgs.

80

Scope Lifetime Initialised how often?
lasts for a sinale run of Initialised (if at all) at
local private to routine . 9 start of every run of
the routine .
ible f [| Tasts for entire run o the routine
global accessibie from —a initialised once
routines the program
routine argument private to routine single run start of every run
sta’qc local private to routine lasts entire program | intialised once
variable

Prototypesallow routines or variables to be introduced without a ffidition. Declaring vari-
ables with the keyworéxtern is a form of prototyping.

Keyword static applies also to global variables and routines. For themgmsprivate to the
file, as opposed to external scope.

Variables introduced witlxtern are prototypes and need to be defined in the same file or some oth

file.

int al[] = {1,2,3};
extern int c;

static int d;
void e (int n)
{
int b = a[1];
+
static void £ (O{}

int ¢ = 1;

int main(){%};

/*
* ¢ must be defined in this file or
* another with multifile compilation

*/

/* private to the file */
/* prototype */

/* 0K, within scope of a; */
/* private to the file */
/* ok but odd */

/* correct but pointless */

34 Operator precedence

We know the BODMAS rules for arithmetic operators. C is fulbplerators, and they have carefully

defined ‘precedence.’

e The highest precedence operators are evaluated lefihb-Otherwise they have equal prece-
dence. In this and other groups, where ‘right to left’ ortlef right’ is stated, this fixes the
precedence where otherwise they have equal precedence.

81

] (i.e., accessing array element)

. (structure member)
e — > (structure member through pointer)
e Postfix increment/decrement

e Next, right to left:

e Prefix increment/decrement
e Casts

xp (the object stored at locatiqy)
& address
si zeof ()

e +/% multiplication, division, remainder modulo
Left to right.

e |+ — addition, subtraction
Left to right.

e < <=,>=, > relations
Left to right.

e —= | =relations
Left to right.

e && logical AND
Left to right.

e || logical OR
Left to right.

e =, + =, — =, etcetera Assignment and assignment operators
Right to left.

Examples.
Disambiguate the following expressions by inserting ptreses, and say whether the expression
is meaningful (legal), assuming the variables have sétbiges.

(i) while (*x++1="\0").,
(ii) a=b=c == 0
(iii) a 0
(iv) a=b=c==d&& e |l £l g
(v) = x[3] —> y[4]

I
o

i
0

I

82

(1) while (*x++1="\0" ..
while ((*(x++)) != ’\0’)..

legal
(ii) a=b=c==0
a=(b=C(Cc==0))
legal
(iii) a=b==c¢c =0
a=((b==c)=0)
illegal
(iv) a=b=c==d&& e |l £ || g
a=(b=((((Cc==d) & e DIl £l g))
legal

(v) * x[3] -> y[4]
* ((x[3]) —> (y[4]))
illegal

35 May 2014 syllabus

35.1 Marks breakdown

e Questions will be based on the topics given below, on therarogiing assignments, and the
quizzes.

35.2 Topics

e Data types: char, short, int, long, float, double, address

e 2s complement short and int numbers, addition, and sul@ract

e Programming elements: for-loops, assignments, conditihile, if-then-else.
e Command-line arguments, atoi, atof.

e Files: fopen, fclose.

e Printf, scanf, fgets, fscanf, fprintf. Difference betwgamtf and scanf.

e Array and string initialisation.

e Functions and subroutines: writing fairly simple funcsamnd subroutines.
Simulating given functions and subroutines, which mightdaursive.

e Single and double precision floating point numbers. (Yowshknow thel : 8 : 23 format for
single precision. Double precision conversions will notls&ed.)

83

e Arrays, 1- and 2-dimensional. Calculating the size of anyaaiad the addresses of array
elements, for which you should know the length of char (19rs{R), int (4), float (4), double
(8), address (4). You must know these lengths: they wouldeadaiven in the exam.

e Static and automatic variables in routines: automaticabdeis are stored on the runtime stack.
e Global variables, keywords

e st at i c affects botHifetime (throughout the program run) apdivacy. static local vari-
ables are completely private, static global variables atimes are private to the file in
which they occur.

e ext ern before a declaration is when the variable type is requirddttel variable is
defined elsewhere, probably in another figxt er n declarations do not reserve space.
These are summarised at the end of Se¢tidon 32.

e Arithmetic expressions

e Order of evaluation (precedence), only up to BODMAS rule dralfaict that relations
have lower precedence. For example

2 == 3+4

is evaluated as follows3 + 4 first, having higher precedence than, so the expression
become® == 7; this evaluates t0 (meaning false).

e Conversion, as for example where
14+1.0/2

evaluates td.5, hecausé.0/2 is evaluated as double, amds converted to double before
adding.

1+ ((double1)/2;
has the same effect.
e Casts,suchasint) 3.4 and(char *) malloc (n+l).

e Malloc and calloc and strings, e.g., for copying strings.
e Structures applied to matrices, malloc and calloc.

e Use of header files and multi-file compilation, as in the lasgpamming assignment.

84

	Programming languages
	Computers and number systems
	Number systems

	Basic data types
	For-loops and printf
	Arithmetic in different bases
	Integer arithmetic
	Command-line arguments (argc and *argv[])
	Assignment statements and stdlib.h
	Double-precision variables
	Floating-point numbers
	Binary point
	Calculating the mantissa digits.
	Scientific notation.
	Double precision

	Scanf() and input/output redirection
	`While' loops
	If-statements and conditions
	Nested if-statements and indentation
	Array initialisation
	Day of week program
	2-dimensional arrays
	Functions and subroutines
	Simulating subroutines and functions
	Gauss-Jordan elimination
	Gaussian elimination
	C has call-by-value
	Subroutine array arguments
	Global variables
	String processing
	Pointers and arrays
	Memory allocation, casts, and strings
	2-dimensional arrays

	Structures
	Structures
	Equality, assignment, routine arguments
	Matrices

	The runtime stack and recursion
	Conversions, casts, and pointers
	Files
	Multi-file compilation
	Scope and lifetime of variables
	Operator precedence
	May 2014 syllabus
	Marks breakdown
	Topics

	Boolean operators || and && are semi-strict.

