MA1213 Quiz 07 ANSWERS 21/11/17

Rules and procedures.

1. Open notes quiz. Collaboration is o.k. 2. Answer sheets will be collected at the end of each tutorial. 3. Answer sheets will **not** be accepted at any other time or in any other way. 4. Show all your work. 5. All quizzes will be marked out of 60 and will contribute 20% to your overall mark.

Attempt 3 questions. Only the first 3 attempted will be marked.

(1). Using the notation $R, F_1, F_{1.5}$ etcetera, list all subgroups of D_8 .

Answer. Subgroups have order 1, 2, 4, 8. Notice that $R^2 = -I$ and it commutes with everything.

$$\{I\}, \langle R \rangle, \langle R^2 \rangle,$$

 $\langle F_1 \rangle, \langle F_2 \rangle, \langle F_3 \rangle, \langle F_4 \rangle,$
 $\{I, F_1, F_2, R^2\}, \{I, F_{1.5}, F_{2.5}, R^2\}, D_8$

(2). Which subgroups of D_8 are normal subgroups? (You may assume without proof that every subgroup of index 2 is a normal subgroup.)

Answer. $\{I\}$, D_8 , automatically.

Since $R^2 = -I$ commutes with everything, $\{1, R^2\} \triangleleft D_8$.

 $\langle R \rangle$, $\{I, F_1, F_2, R^2\}$,, and $\{I, F_{1.5}, F_{2.5}, R^2\}$, are normal subgroups since they have index 2. If we conjugate F_1 by R, $RF_1R^3 = F_2$, so $\{I, F_1\}$ is not a normal subgroup. Similarly $\langle F_{1.5} \rangle$, $\langle F_2 \rangle$, and $\langle F_{2.5} \rangle$, are not normal subgroups.

(3). Let $H = \langle 3 \rangle \leq \mathbb{Z}_6$ (under addition). In abelian groups, every subgroup is a normal subgroup. List the left cosets of H and give the Cayley table for the quotient group \mathbb{Z}_6/H .

Answer.

$$\{0,3\}, \{1,4\}, \{2,5\}$$

+	$\{0, 3\}$	$\{1, 4\}$	$\{2, 5\}$
$\{0, 3\}$	$\{0, 3\}$	$\{1, 4\}$	$\{2, 5\}$
$\{1, 4\}$	$\{1, 4\}$	$\{2, 5\}$	$\{0, 3\}$
$\{2, 5\}$	$\{2, 5\}$	$\{0, 3\}$	$\{1, 4\}$

(4). The quaternion group Q_8 has eight elements $\pm 1, \pm i, \pm j, \pm k$. Implicitly (-1)i = -i and so on; -1 commutes with everything. The Broombridge formula says

$$i^2 = j^2 = k^2 = ijk = -1.$$

Calculate ij, ji, and jk.

Answer.

$$(-1)k = (ijk)k = ij(-1); ij = k$$
$$i(-1) = i(ijk) = (-1)jk; jk = i$$
$$ji = j(jk) = -k$$

(5). Construct the Cayley Table for Q_8 .

×	1	i	j	k	-1	-i	-j	-k
1	1	i	j	k	-1	-i	-j	-k
i	i	-1	k	-j	-i	1	-k	j
j	j	-k	-1	i	-j	k	1	-i
k	k	j	-i	-1	-k	-j	i	1
-1	-1	-i	-j	-k	1	i	j	k
-i	-i	1	-k	j	i	-1	k	-j
1		k						
-k	-k	-j	i	1	k	j	-i	-1