System Analysis and Design Lifecycles.

 Stage 1 & F

 Feasibility

 Stage 1 &

2

 Stages 2, 3,

4 and 5

Stage 6

Information systems planning

Investing in strategic planning for the development of future and existing information systems. Many methods have been put forward and take a variety of approaches but generally the result from the planning exercise will be an analysis of the organisations present position, recommendations as to which systems should be developed or enhanced, a plan showing the order in which these projects should be done and outline project plans and terms of reference for each project.

Project Initiation

The phase where the project is set up, terms of reference agreed, team members assigned and plans drawn up.

Feasibility study

Phase where it is decided if the project is technically possible, if it can be financially and socially justified and whether the new system will be accepted by the organisation.

System analysis

Current system is analysed in great detail to determine the requirements for a new system.

Business systems design

The requirements for the new system will have been broadly specified in the previous phase. In this phase various technical solutions that meet the requirements are evaluated and one is selected. A detailed logical design of the new system is developed showing in a clear non-technical way how the new system will operate within the business.

Physical design

The logical design is converted into a design that fits the computer hardware and software selected. Physical design involves the specification of files, the specification of programs and the detailed operating and manual procedures that support them.

Construction

This concerns the programming, the assembly of the programs into a system and the testing of the system.

Transition

This phase involves the transition from operating the old system to operating the new. It involved the installation of equipment, the conversion of old system data to the formats required by the new system and the training of users. Some systems life cycles join the construction and transition phase together to form an implementation phase.

Production

This phase begins when the system has been completely handed over to the users. The term production conveys that the system is operating and producing the information that was required of it.

Maintenance and review

Throughout the production phase the system will require maintenance in various ways,

Correction of entries

Adaptation to new software and hardware releases

Minor enhancements

The system will have to be reviewed to show how well it has met the requirements and objectives set for it and whether it continues to meet the users requirements. These enhancements and reviews may lead to further system studies.

Traditional Systems Lifecycle (Waterfall)

The systems lifecycle is the oldest method for building information systems and is still used today for medium or large complex systems projects. The lifecycle methodology is a very formal approach to building a system, dividing systems development into formal stages that must take place in a sequential order. All the activities in each stage must be completed before the next stage can begin. The systems lifecycle methodology also maintains a very formal division of labor between end users and information systems specialists. Technical specialists such as systems analysts and programmers are responsible for much of the systems analysis, design and implementation work; end users are limited to providing information requirements and reviewing the technical staffs work. The lifecycle emphasizes formal specifications and paperwork so many documents are generated during the course of a systems project.

The systems lifecycle

	Stage
	Division of labor
	End Product

	Systems analysis
	Technical specialists identify the problem, gather information requirements, develop alternative solutions and establish a project management plan. Business users provide information requirements, establish financial or operational constraints on the solution and select the solution.
	Systems proposal report.

	Systems Design
	Technical specialists model and document design specifications and select the hardware and software technologies for the solution. Business users approve the design specifications.
	Design Specifications.

	Programming
	Technical specialists write program code
	Program specifications and code.

	Testing
	Technical specialists develop test plans and conduct unit, system and acceptance tests. Business users provide test data and scenarios and validate test results.
	System performance tests.

	Conversion
	Technical specialists prepare a conversion plan and supervise conversion. Business users evaluate the new system and decide when the new system can be put into production.
	User sign-off.

	Production and Maintenance
	Technical specialists evaluate the technical performance of the system and perform maintenance. Business users use the system and evaluate its functional performance.
	Post implementation audit.

After the system is installed and in production users and technical specialists will go through a formal post implementation audit that determines how well the new system has met its original objectives and whether any revisions or modifications are required. After the system has been fine-tuned it will need to be maintained while it is in production to correct errors, meet requirements or improve processing efficiency. Over time the system may require so much maintenance to remain efficient and meet user’s objectives that it will come to the end of its useful life span. Once the systems lifecycle comes to an end a completely new system is called for and the lifecycle may begin again.

The systems lifecycle is still used for building large complex systems that require a rigorous and formal requirements analysis, predefined specifications and tight controls over the systems building process. The systems lifecycle approach is costly, time consuming and inflexible. Volumes of new documents must be generated and steps repeated if requirements and specifications need to be revised. Because of the time and cost to repeat the sequence of lifecycle activities, the methodology encourage freezing of specifications early in the development process discouraging change. The lifecycle approach is also not suitable for many desktop systems which tend to be less structured and more individualized.

Prototyping

Prototyping consists of building an experimental system rapidly and inexpensively for end users to evaluate. By interacting with the prototype users can get a better idea of their information requirements. The prototype endorsed by the users can be used as a template to create the final system.

The prototype is a working version of an information system or part of the system but it is meant to be only a preliminary model. Once operational the prototype will be further refined until it conforms precisely to users requirements. Once the design has been finalized the prototype can be converted to a polished production system.

The process of building a preliminary design, trying it out, refining it and trying it again has been called an iterative process of systems development because the steps required to build the system can be repeated over and over again and it actively promotes system design changes. It has been said that prototyping replaces unplanned rework with planned iteration with each version more accurately reflecting users requirements.

[image: image1]
The four-step model of the prototyping process,

Step 1
Identify the users basic requirements. The system designer (usually an information systems specialist) works with the user only long enough to capture their basic needs.

Step 2
Develop an initial prototype. The system designer creates a working prototype quickly using 4th generation software, interactive multimedia or computer aided software engineering (CASE) tools.

Step 3
Use the prototype. The user is encouraged to work with the system in order to determine how well the prototype meets their needs and to make suggestions for improving the prototype.

Step 4
Revise and enhance the prototype. The system builder notes all the changes the user requests and refines the prototype accordingly. After the prototype has been revised the cycle returns to step 3 and steps 3 and 4 are repeated until the user is satisfied.

Advantages +Disadvantages

Prototyping is most useful when there is some uncertainty about requirements or design solutions. Prototyping is especially useful in designing an information systems end user interface – the part of the system that the users interact with. Because prototyping encourages intense end-user involvement throughout the systems development process it is more likely to produce systems that fulfill user requirements.

However rapid prototyping can gloss over essential steps in systems development. If the completed prototype works reasonably well management may not see the need for reprogramming, redesign or full documentation and testing to build a polished production system. Some of these hastily constructed systems may not easily accommodate large quantities of data or a large number of users in a production environment.

Spiral Methodology:

While the waterfall methodology offers an orderly structure for software development, demands for reduced time-to-market make its series steps inappropriate. The spiral methodology reflects the relationship of tasks with rapid prototyping, increased parallelism, and concurrency in design and build activities. The spiral method can still be planned methodically, with tasks and deliverables identified for each step in the spiral.

Barry Boehm introduced the Spiral Methodology to "fix" problems with the Waterfall Methodology. This is the most commonly used variant of the Waterfall today.

The Spiral methodology "peels the onion", progressing through "layers" of the development process. A prototype lets users determine if the project is on track, should be sent back to prior phases, or should be ended. However, the phases and phase processes are still linear.

	

	[image: image2.png]1 Objectives, Altematives, and Constraints

2 Risk Analysis and Prototype
3 Concept of Operation
4 Requirement and Life-cycle Plan

5 Objectives, Altematives, and Constraints

6 Risk Analysis and Prototype

7 Simulation, Models, and Benchmarks
8 Software Requirements and Validation
9 Development Plan

10 Objectives, Altematives, and
Constraints

11 Risk Analysis and Prototype

Traditional
Spiral
Methodology

12 Simulation, Models, and Benchmarks

vare Product Design, Validation,
and Verification
14Integration and Test Plan
15 Objectives, Alematives, and Constraints
16 Risk Analysis and Operational Prototype
I
I

7 Simulation, Models, and Benchmarks

8 Detailed Design
19Code
20 Unit, Infegration, and Acceptance Testing
21 Implementation (Deployment)

The Boehm-Spiral software engineering methodology is composed into many stages. See Table 4.1 on page

.

	Table 4.1: Boehm-Spiral Methodology Stages

	[image: image4.png]Cycle

Step

Cycle 1 - Early Analysis

o Step 1:
o Step 2:
® Step 3:
o Step 4:
® Step 5:
® Step 6:

Objectives, Alternatives, and Constraints
Risk Analysis and Prototype

Concept of Operation

Requirement and Life cycle Plan
Objectives, Alternatives, and Constraints
Risk Analysis and Prototype

Cycle 2 - Final Analysis

® Step 7:
® Step 8:
® Step 9:

o Step 10:
o Step 11:

Simulation, Models, and Benchmarks
Software Requirements and Validation
Development Plan

Objectives, Alternatives, and Constraints
Risk Analysis and Prototype

Cycle 3 - Design

o Step 12:
o Step 13:

o Step 14:
o Step 15:
o Step 16:

Simulation, Models, and Benchmarks
Software Product Design, Validation, and
Verification

Integration and Test Plan

Objectives, Alternatives, and Constraints
Risk Analysis and Operational Prototype

Cycle 4 - Tmplementation
and Testing

o Step 17

o Step 18:
o Step 19:
® Step 20:
o Step 21:

Simulation, Models, and Benchmarks

Detailed Design

Code

Unit, Integration, and Acceptance Testing
Tmplementation (Deployment)

The processes starts in the center of the spiral. Each completed cycle along the spiral represents one stage of the process. As the spiral continues, the product matures.

In the Boehm-Spiral software engineering methodology, as often quoted and viewed, the process spirals from stage to stage, with each spiral getting closer and closer to a final solution. However, the Boehm-Spiral software engineering methodology also has a steady progress from one stage into the next stage with an explicit review between each stage. Thus the Boehm-Spiral is a hybrid of both a sequential and a cyclical software engineering methodology. However, in engineering practice, the term spiral is used as a generic name to any cyclical software engineering methodology, including cycles leading to prototypes and multiple versions.

Advantages

· Applies to maintenance as well as development

· Incorporated prototyping as a risk reduction option at any stage

· Accommodates reworks or go backs to earlier stages.

· Focuses early on the reuse of existing software.

· Focuses on eliminating errors and unattractive alternatives early.

Disadvantages

· Relies on project professionals with risk assessment expertise.

· Management may be wary about control.

· Needs refinement for general use.

· Doesn’t work well with fixed price contracts

· Use by outside contractors and systems integrators difficult.

SSADM – Structured Systems Analysis and Design Method

SSADM is one of the most mature and widely used methods. However it requires a significant investment in training and learning. Three separate questions must be answered to explain the underlying principles of the method.

Why have systems analysis at all?
It is often difficult to explain what is achieved by systems analysis and design especially when talking to a user that wants a system tomorrow! Why should it take so long to design a system? To examine the reasons for using a method perhaps the subject is best tackled from the point of view of something that is a comparable investment – building a house.

Start construction straight away?
You could go to the local DIY store and buy some materials and start laying the foundations straightaway. After all, houses are pretty standard and you recently built a shed so you are quite and expert! Unfortunately you get carried away and find out when its finished that the walls are not strong enough to support the roof and you forgot to put the electricity cables in the walls so there is no light. The whole thing fails because a lack of planning meant that even simple standard parts of the design of a house were missed.

Go directly to a builder?

You look in the golden pages and find a builder who seems to have the right qualifications. Surely if you go to someone who has had a lot of experience in building houses then he won’t make the same mistakes that you made? You show the builder you plot of land and he agrees to go ahead and start building. You tell him you want some bedrooms, a living room, a kitchen and a bathroom and then you go away and leave him to it. Six months later he tells you he’s finished and you go and look at the house. The builders taste in house design is not very conventional and he has built you a bungalow with turrets!! He has built you a house that meets your instruction but there are all sorts of things about it that you hate – the rooms are small and dark whereas you like large bright rooms. The place is habitable but you don’t want to live there. You have a house that doesn’t meet your requirements because you didn’t tell the builder exactly what you wanted and he didn’t come and check with you that what he was doing was what you wanted. You assumed that because he was an expert in building houses he didn’t need to be told what to build.

Employ an architect to design it first?

You have managed to sell your monstrosity and buy another plot of land. This time you have learnt your lesson. You employ an architect. You have a series of meeting s together. There are several things you tell him about your requirements. Then he goes away, draws a few plans and shows them to you to clarify a few points. To help you envisage it he produces an artist’s impression and non-technical drawings so you can understand it all. He asks you some searching questions about how you want the rooms laid out and makes absolutely sure that he understands your requirements. Also he points out that there are certain building regulations that must be adhered to so you have a good understanding of the constraints. He finally draws plans from several viewpoints and explains anything that you don’t understand. Finally you are happy with the plans and he asks you to authorize him to go ahead and develop the system. You sign the necessary papers and he gives the plans to a builder who proceeds to build your dream home.

This rather simplistic example illustrates the need to specify requirements before the construction of a house (or system) is started. Although it may seem that the requirements are very straightforward constraints may be missed or interdependencies overlooked during development. A problem is far cheaper to put right early in the process that leaving it until the final day before implementation. The systems analyst takes a similar role to that of the architect – a communicator between the client and the builder. Some of the underlying principles of systems analysis, which are also principles of SSADM, help make sure that the user requirements are fully specified.

User involvement – During the design process the architect constantly made sure that he understood the requirements by producing non-technical plans for the customer to look at and discuss. It is a basic principle of SSADM that the users have involvement in and commitment to the development of their system from a very early stage. By ensuring the specification and design math the users requirements at each stage of the analysis and design the risks of producing the “wrong” system are very much reduced and possible problems can be sorted out before they become unmanageable.

Quality assurance – The architect needed authorization from the customer to go ahead once the plans were agreed. In SSADM formal quality assurance reviews are held at the end of each stage where the user is asked to “sign off” the design so far. The end products for the stage are scrutinized for quality, completeness, consistency and applicability by the users, developers and by experienced systems staff external to the project.

Separation between logical and physical specifications – The requirements were expressed in logical terms first before the final architecture was known. This helped the architect to determine the best way to satisfy the requirements before going into the physical details. SSADM separates logical design from physical design. A hardware/software independent logical design is produced which can easily be translated into an initial physical design. This helps the developers to address one problem at a time and prevents needless constraints at too early a stage in the development. This also helps communication with the users who may not be computer literate but are perfectly able to validate a logical specification or design of their systems.

It is important to investigate what is required – It is rare for any users to be able to describe in detail everything that is required without a lot of prompting. The architect in the example played a vital role using his experience of other designs and his knowledge of the techniques of planning in asking about many of the details. Similarly the systems analyst will need to ask the users many questions about what is required.

Why use a structured method?
Structured method share the following characteristics

· They structure a project into small well-defined activities and specify the sequence and interaction of these activities.

· They use diagrammatic and other modeling techniques to give a more precise (structured) definition that is understandable by both users and developers.

Advantages of structured methods – as opposed to a systems analyst using their experience to just ask all the right questions!
· Structured analysis provides a clear requirements statement that everyone can understand and is a firm foundation for subsequent design and implementation. Part of the problem with a systems analyst “just asking the right questions” is that it is often difficult for a technical person to describe the system concepts back to the user in terms that the user can understand. Structured methods generally include the use of easily understood non-technical diagrammatic techniques. It is important that these diagrams do not contain computer jargon and technical detail that the user won’t understand – and does not need to understand.

· More effective use of experienced and inexperienced staff. A structured method does not remove the need for experienced staff but it does provide the option of spreading the experience more thinly. The use of structured techniques means that certain tasks can be delegated to inexperienced staff who can then be guided by the more experienced.

· Improved project planning and control. The use of a structured approach allows the more effective management of projects. Splitting a project down into stages and steps allows better estimation of the time taken to complete a project. Also by following a detailed plan it will be possible to detect slippage as it occurs and not just before the system is due to be implemented.

· Better quality systems. By making the specifications very comprehensive it is possible to ensure that the system built will be of a high quality. The use of structures techniques has been found to lead to a system that is very flexible and amenable to change. Within SSADM user participate in formal quality assurance reviews and informal walkthroughs and “sign off” each stage before the developers progress to the next. This means that the analysts can be confident that the new system will meet the users requirements before it is built.

Why choose SSADM?
One of the main advantages is that SSADM builds up several different views of the system that are used to cross check one another. In the building example earlier to help the customer visualize the final building the architect drew several different representations – a cross sectional view, artists impression etc. This probably helped the architect to validate the plans as he made sure that each view was consistent with the others. In SSADM three different views of the system are developed in analysis. These views are closely related to each other and are crosschecked extensively for consistency and completeness. The equal weight given to these three techniques and the prescriptive procedures for checking them against one another is a great strength of the SSADM approach. The three views are,

· Underlying structure of the systems data (Logical data structure)

· How data flows in and out of the system and is transformed within the system (data flow diagrams)

· How the system data are changed by events over time (entity life histories).

Another advantage of SSADM over a number of methods is that it combines techniques into a well-established framework and so as well as providing the techniques for the analyst it gives guidance on how and when to use them. Even though SSADM adopts this rather prescriptive approach there is still a large amount of flexibility within the method and it should be tailored to specific project circumstances.

Basic principles of SSADM

SSADM is a data driven model – this means that there is a basic assumption that the systems have an underlying, generic data structure which changes very little over time, although processing requirements may change. Within SSADM this underlying data structure is modelled from an early stage. The representation of this data structure is checked against the processing and reporting requirements and finally built into the systems archeticture.

The structured techniques of SSADM fit into a framework of steps and stages each with defined inputs and outputs. Also there are a number of forms and documents that are specified which add information to that held within the diagrams. Thus SSADM consists of three important features

· Structures - define frameworks of steps and stages and their inputs and outputs.

· Techniques – define how the steps and tasks are performed.

· Documentation – defines how the products of the steps are presented.

Each module is designed to be self contained wit hthe idea that projects might choose to use SSADM for one module and not for others. SSADM is divided into 5 modules and each of these are divided into stages. Each stage is divided into steps.

Requirements Analysis

Stage 1 – Investigation of current environment.

The current system is investigated for several reasons

· The analysts learn the terminology and function of the users environment

· The old system may form the basis of the new system

· The data required by the system can be investigated

· It provides the users with a good introduction to the techniques

· The boundaries of the investigation can be clearly set.

The current system view built in stage 1 is redrawn to extract what the system does without any indication of how it is achieved. The resulting picture is the logical view of the current system. This allows the analyst to concentrate on what functions are performed in the current system and to make decisions about what must be included in the new system.

Stage 2 – Business system options

They reflect different ways (options) in which the system might be organised to meet the requirements. A decision is made by the users as to which option or combination of options best meets their needs.

Requirements Specification

Stage 3 – Definition of requirements

Based upon the selected Business Systems option, a detailed specification of the required system is built up and checked extensively. In order that the new system will not be condstrained by the current implementation there are a number of steps within this stage to lead the analysts gradually away from the current system towards a fresh view of the requirements.

This stage builds up the data design so that all the required data will be included. Is applies a relational analysis technique to groups of data items in the system to act as a cross check on the data definitions.

Logical Systems Specifications

The two stages in this module areoften performed simultaneously

Stage 4 – Selection of technical options

At this stage the development team have enough information to compile the different implemetation options for the system. Each option is costed out and the benefits weighed out against the costs to give the user some help in choosing the final solution. This might form the basis for selecting the final system hardware.

Stage 5 – Logical design

The specification developed in stage 3 is expanded to a very high level of detail so that the constructor can be given all the detail necessary to build the system

Physical design

Stage 6 – Physicla design

The complete logical design – both data and processing – is converted into a design that will run on the target environment. The initial physical design is tuned before implementation so that it will meet the requirements of the system.

Structure of SSADM

Methodologies

A systems development methodology is a collection of procedures, techniques, tools and documentation aids which will help systems developers in their effort to implement a new information age.

Characteristics of mythologies

Many mythologies work on the assumption that the logical design is to be distinguished from the physical design of a system and is carried out first. That’s to say that there is no use in buying a computer and then trying to find a system that will be compatible with it if the system does not meet the needs of users.

Rather what a system is supposed to do and the data items it deals with, should be defines first, and the physical implementation made subject to these requirements. The system is described in terms of what it is to do rather than how this can be done.

Hardware and software are therefore acquired for the system, rather than a system acquired to fit in with the purchased hardware and software. On the other hand technological constraints cannot be ignored.

A second theme in many methodologies is that the type of data an organisation needs is less likely to change than either the processes which operate on it or the output information required of it.

Within the organisation the needs of users as expressed in the outputs or potential outputs required of the system are considered prior to hunting for input data. The users information requirements and potential requirements should determine the type of data collected or captured by the system.

Comparing and evaluating methodologies

Methodologies evolve over time as their creators and users use them in practice and revise them.

Methodologies are underpinned by a set of philosophical beliefs. For instance, some are based on the belief that systems development is based on unchangeable and objective facts while others take the view that the facts may be interpreted differently depending on ones viewpoint. A sales target may be simply a figure or it may be part of a political process which negotiates between sales personnel, management and directors. The point is that if you don’t subscribe to the philosophy behind a methodology there is a good chance that you will not get the system that you want.

Different methodologies emphasise different aspects of the development process. For example structured methodologies such as SSADM emphasise the design of solutions.

All methodologies seek to facilitate the best solution. But best may be interpreted in number of ways, such as most rapid or least cost systems. Some methodologies are highly prescriptive and require rigid adherence to stages while others are highly adaptive allowing for creative use of their components. The former may be viewed as following a recipe and the latter as selecting suitable tools form a toolkit.

In choosing the most appropriate methodology an organization must consider

· How open is the system

· To what extent does it facilitate participation

· Does it generate alternative solutions

· Is it well documented, tried, tested and proven to work

· Can component tools be selected and used as required

· Will it benefit from CASE tools and prototyping

It is not necessary to be restricted to the tools offered by just one methodology. Elements of harder techniques such as SSADM and possibly prototyping might be usefully employed during development.

Using methodologies productively requires skill and expertise. They do not by themselves produce good systems solutions.

Advantages of using a standard approach such as a methodology

1. The documentation requirements are rigorous.

2. Less qualified staff are able to carry out some of the analysis work cutting the cost of the exercise.

3. Using a standard development process leads to improved system specifications

4. Systems developed in this way are easier to maintain and improve.

5. Users are involved with development work from an early stage and are required to sign off each stage.

6. The emphasis on diagramming makes it easier for relevant parties, including users, to understand the system.

7. The structured framework of a methodology helps with planning. It defines the tasks to be performed and sets out when they should be done. Each step has an identifiable end product. This allows control by reference to actual achievements rather than to estimates of the program.

8. A logical design is produced that is independent of hardware and software. This logical design can then be given a physical design using whatever computer equipment and implementation language of progress.

9. Techniques such as data flow diagrams, logical data structures and entity life histories allow information to be crosschecked between diagrams and ensure that the system delivered is what was wanted.

Disadvantages.

1. Methodologies are generally tailored to large, complex organizations. Only recently are they being adapted for PC based systems.

2. It has been argued that methodologies are ideal for analyzing and documenting processes and data items at operational level but are perhaps inappropriate for information of a strategic nature that is collected on an ad hoc basis.

3. Some are a little too limited in scope being too concerned with the system design and not with their impact on actual work processes or social context of the system.

4. The conceptual basis of some is not properly thought out. Many methodologies grew out of diagramming conventions.

5. Arguably methodologies are just as happy documenting a bad design as a good one.

Systems investigation

The systems investigation is a detailed fact finding exercise about the areas under consideration

· The project team has to determine the inputs, outputs, processing methods and volumes of the current system.

· It also examines controls, staffing and costs and reviews the organizational structure.

· It should also consider the expected growth of the organization and its future requirements.

The stages involved in this phase of the systems development are as follows,

· Fact finding by means of questionnaires, interviews, observation, reading handbooks, manuals, organization charts, or from the knowledge and experience of members of the study team.

· Fact recording using flowcharts, decision tables, narrative descriptions, organization and responsibility charts.

· Evaluation, assessing the strengths and weaknesses of the existing systems.

Interviews

Interviews with members of staff are undoubtedly the most effective method of fact finding. If properly conducted an interview should enable the analyst to overcome the fears and resistance to change that may be felt by the employee, in addition to finding out facts about his/her work.

There are some helpful guidelines as to the approach and attitude to be adopted by the investigator who is conducting a fact-finding interview.

1. the interviewer must appreciate that they are dealing with many different individuals with different attitudes and personalities. He must be able to adapt his approach to suit the individual interviewee rather than follow a standard routine.

2. The interviewer should be fully prepared for the interview having details of the interviewees name and job position and a plan of questions to ask.

3. Employees ought to be informed before the interview that a systems investigation is taking place and its purpose explained.

4. The interviewer must ask questions at the appropriate level to the employees position within the organization (for example top management will be concerned with policy, supervisors with functional problems)

5. The interview should not be too formal a question and answer session, but should be allowed to develop into a conversation whereby the interviewee offers their opinions and suggestions.

6. The interviewer must not jump to conclusions or confuse opinions with facts. He should accept what the interviewee has to say (for the moment) and refrain from interrupting or propounding his own opinions.

7. The interviewer should gain the interviewees confidence by explaining in full what is going on and not giving the impression that he is there solely to find fault. This confidence can also be obtained by allowing the interview to take place on the interviewees “home ground” (desk or office) and ensuring that the interviewee has no objections to notes being taken.

8. The interviewer should arrange interviews so that he moves progressively through the system, for example from input clerk to supervisor to manager.

9. The interviewer should refrain from making off the record comments during the course of the interview, for example about what he is going to recommend.

10. The interview should be long enough for the interviewer to obtain the information he requires and to ensure that he understands the system but short enough to ensure that concentration does not wander.

11. The interview should be concluded by a resume of its main points (so that the interviewee can confirm that the interviewer has obtained what he should have) and the interviewer should thank the interviewee for their time and trouble.

Checklist of Do’s and Don’ts for conducting interviews

Do

Don’t
Plan

Be late

Make appointments

Be too formal or too casual

Ask questions at the right level

Interrupt

Listen

Use technical jargon

Use the local terminology

Confuse opinion with fact

Accept ideas and hints

Jump to conclusions

Hear both sides

Argue

Collect documents and forms

Criticize

Check the facts back

Suggest

Part pleasantly

Interviews can be time consuming for the analyst who may have several to conduct and therefore expensive. If conducted efficiently however they allow the interviewer to provide information as well as obtain it. In an interview, nuances and attitudes not apparent from other sources may be obtained and immediate follow up to unsatisfactory/ambiguous replies is possible. Interviews are particularly appropriate for senior management as other approaches may not be appropriate at executive levels.

Questionnaires

The use of questionnaires may be useful whenever a limited amount of information is required from a large number of individuals or where the organization is decentralized with many separate entity locations.

Questionnaires may be used in advance of an interview to save the analysts and employees lime but it should be remembered that they must be properly introduced.

1. Employees ought to be informed before receiving the questionnaires that a systems investigation is to take place, and its purpose explained.

2. Questions must be designed to obtain exactly the information necessary for the study. This is a very difficult task.

It must be stressed that questionnaires by themselves are an inadequate means of fact-finding and should usually be followed up by an interview or observation. Whenever possible questionnaires should be designed with the following in mind,

1. They should not contain too many questions (people tend to lose interest quickly and become less accurate in their answers).

2. They should be organized in a logical sequence.

3. They should include an occasional question the answer to which corroborates the answers to the previous questions.

4. Ideally, they should be designed so that each question can be answered by either “yes” or “no” or a “tick” rather than sentences or paragraphs.

5. They should be tested independently before being issued to the actual individuals. The test answers should enable the systems analyst to establish the effectiveness of their questions and help determine the level of subsequent interviews and observations.

6. They should take into account the sensitivity of individuals in respect of their job security, change of job definition etc. Staff may prefer anonymity but this prevents follow-up of interesting responses.

Observation

Once the analyst has some understanding of the methods and procedures used in the organization, they should be able to verify his findings and clarify any problem areas by an observation of operations. Observation is a useful way of cross checking with the facts obtained by an interview or questionnaire. Different methods of recording facts ought to produce the same information but it is not inconceivable that staff do their work in one way whilst management believe that they do something different.

It should be noted that staff may act differently from normal if they know that they are being observed, whereas there might normally be a lack of adherence to procedures laid down in manuals, these might be rigorously followed in the presence of a system analyst.

Document review

The systems analyst must investigate the documents that are used in the system. This may be a wide-ranging investigation, using for example organization charts, procedures manual and standard operational forms. One way of recording facts about document usage is the document description form. This is simply a standard form which the analyst can use to describe a document. It includes certain details about any document.

1. A list of all items on the document.

2. The size of each data item (fixed length or variable length).

3. The format of the item, in terms of alphabetic, numeric or other characters, e.g.

A(15) means 15 alphabetic characters

ANN means a letter followed by 2 numbers.

4. The person responsible for entering the data item on the document.

5. Source and destination of each copy of the document.

6. Purpose of the document.

7. Name of the document.

8. Space for the system analyst to make further notes (for example price or discount allowed on a sales invoice, whether the completed document is checked and authorized by a supervisor etc.)

The overriding risk is that the staff do not follow documented policies and procedures or that these documents have not been properly updated, so this method is best used in tandem with one or more techniques.

Activity sampling

A technique in which a large number of observations are made over a period of a group of machines, processes or workers. Each observation records what is happening at that instant; the percentage of observations recorded for a particular activity enables the total time during which that activity is occurring to be predicted. Traditionally carried out by industrial engineers using manual recording systems, this technique used to be dependent on the correct calculation of the number of observations required to give statistically valid data. Increasing use of on-line computerized data now enables managers to account for every second of their staff's time. The technique is particularly suitable for such processes as phone selling, customer services, etc. It can, however, also be applied in manufacturing systems and to groups, e.g. by requiring teams to bar code themselves into a work area.

· Activity Sampling is a method of data collection which provides information about the proportion of time spent on different activities.

· Activities must be observable and distinguishable

· Sampling must keep pace with the task

· Must consider in design, categorization of activities, development of sampling schedule, information collection and recording (simple tally or sequential sampling), actual analysis

Advantages

Objective.

No active participation from operators

Once set up little skill required to carry out the study or interpret the data.

Findings can be very informative.

Disadvantages

Significant skill in categorizing and describing activities.

Complex tasks with lengthy elements may require significant time for data collection.

Little information on cognitive activities.

Must ensure that the sample is representative.

Investigating and defining requirements

A requirement is a feature or facility that is desired by some of the users of the current or future system. The technique of requirement definition involves eliciting those requirements, defining and refining them, and documenting them in the requirements catalogue. Throughout this process the analyst tries to develop a consensus amongst users regarding the definition of each requirement and its importance in the new system. In this step the objective is to define and agree requirements and their relative importance in sufficient detail to produce Business systems options.

The requirements will fall into two main categories: first, those resolving or reducing deficiencies in the current system and, second, those for new facilities not yet provided in the current system. The requirements catalogue can be seen as a list of the factors that must be accounted for in the new system. As the project progresses each requirement becomes defined in more detail. Eventually the requirement will be fully resolved, then documented as part of the requirements specification or discarded. When considering different ways forward for the project these requirements provide a powerful checklist against which different options can be measured. This happens in both the business systems option and the technical systems option stage. It is useful to give priorities to the requirements to help in the production and evaluation of different options.

The emphasis is on defining requirements for the future system rather than on describing the problems of the old system. Each requirement should ideally be expressed in a quantifiable or measurable way so that it can be tested when the eventual system is delivered.

Approach to requirements definition

Investigating and defining the requirements is carried out in parallel with investigating current processing and investigating current data. Predominantly standard investigation techniques are used such as interviewing, questionnaires, observation and studying previous reports. When trying to give priorities to different requirements it may be necessary to have brainstorming sessions with a group of senior users. Achieving consensus between users on requirements and their relative priorities is often a difficult activity and may require more sophisticated techniques than those of conventional systems analysis.

 There is considerable interaction between requirements definition and other techniques. For instance problems may be identified during the development of the current physical data flow models which need to be described in the requirements catalogue. Later these may be resolved in the required system data flow models or in the function definition, and then reflected back in the requirements catalogue.

Sometimes a formal user requirement is produced by the users independently (this often happens as a prelude to involving specialist staff). They are usually expressed purely in narrative and are a useful input into the development of the requirements catalogue. However such user requirements often prejudge the design with such statements as “I need a terminal linked to a mainframe” (suggesting a technical solution without describing the requirement or the problem). The underlying requirement might be that the user needs data to be up-to-date at all times and will need to be able to access the data during working hours. It is the analysts responsibility to make sure that the real requirements are identified and expressed in an implementation independent way. It is important to have this logical statement of requirements so that the solution is not needlessly constrained. It must be left to the project team to specify the best solution to fit the users’ requirements without allowing the users preconceptions to be carried through to an ill judged implementation.

Functional Requirements
These are activities that the new system is required to perform. They cover the normal range of functional requirements: storing and retrieving data, updating data, producing reports, answering enquiries, interacting with other systems, etc. As an example we have developed the requirement catalogue entry for the Vehicle Availability Enquiry requirement in Table 1. Many of these functional requirements will be documented further in data flow models for the current physical and current logical system. However enquiries are nor normally shown on data flow diagrams (particularly unpredictable or demand enquiries – known as ad hoc enquiries) so special care is needed to ensure that functional requirements for enquiries are fully documented.

Non Functional Requirements

As the name suggests these are not functions or capabilities of the new system. They cover other important requirements such as performance, security, recovery, archive and audit. They are often associated with particular functional requirements, e.g. the response time for a Vehicle Availability Enquiry must be less than 5 seconds. Other non-functional requirements may be system wide, e.g. hardware must be able to operate in Yorkie’s depots (particularly smelly and dirty places). Ideally non-functional requirements should be quantifiable so that conformance to requirements can later be tested. For example, after thirty mins formal training a user should be able to perform a Vehicle Availability Enquiry in less than 2 mins unaided.

Types of non-functional requirements

Service level requirements – These are related to the performance of the required system. They cover such factors as the times of the day when a particular function will be available, response times , turnaround times for batch processing and reliability considerations (e.g. Acceptable downtime, number of failures and maximum amount of downtime per failure). These service level requirements are important inputs to the technical systems options work which may involve capacity planning expertise. During physical design they can act as targets for the performance of the system and can form the basis of the Service Level Agreements with suppliers.

Access Restriction – These are developed in outline at this stage. They describe which users have access rights to which data. Later in the requirements specification module, they are refined to describe access to entity occurrences, attribute values and relationships; these are further documented in entity descriptions, attribute descriptions and relationship descriptions. Other security aspects such as physical protection and data encryption could also be described. Some particularly sensitive projects may need to use sophisticated risk management techniques such as CRAMM (CCTA risk and management method).

Recovery – This is a complex issue with rapid recovery being very expensive. Pragmatic consideration needs to be given to issues such as how long we could cope without the system after a crash or how much data could be lost in a system failure. The recovery requirements will have a considerable impact on the kind of hardware and software required and on planning for contingencies such as back up manual systems or agreements with other computer installations. Again sophisticated risk analysis techniques may be appropriate.

Audit and Control – For financial systems, audit requirements are very important. These may have an impact on how particular functions are allocated to users an on access to the system. It may also be necessary to specify audit trails.

Constraints – There may be complex conversion requirements particularly if the current system is a manual system. Other important constraints could be associated with interfaces with other computer systems or particular or particular human computer interaction (HCI) requirements (e.g. use by disabled staff or the environmental conditions under which the hardware has to operate).

Archive – Archival requirements are broadly described in this step. They will be considered in greater detail during the development of the required system logical data model. They are then added to entity descriptions and will cover factors such as when data is to be archived and later destroyed and what physical media will hold archive data.

Requirements Catalogue Documentation
An Example of a requirements catalogue entry is shown in Table 1. The majority of the information shown below is developed early in a project, particularly in the investigation and definition of requirements. As the project progresses and the requirements are resolved much of this detailed information and extended to formal requirements specification documentation (e.g. functional requirements and their associated performance requirements are often transferred to functional definitions, requirements covering access restrictions and archival are transferred to entity descriptions).

Source - Where the requirement was originally identified – this could be a user, a document, a previous study or feasibility report. The source may cross-refer to the user catalogue. This describes the current system users and their particular responsibilities.

Priority – Describes the priority assigned by the user. Various forms of classification are possible such as: high/low, mandatory/desirable/optional, or use of a numerical rankings or weightings scheme. Some projects may use a systematic approach to the determination of priorities similar to the critical success factor approach often used in information systems planning.

Owner – The name of the user or the part of the organisation responsible for negotiating the requirement described. Again this may cross-refer to the User catalogue.

Requirement ID – An identifier given to the requirement. If stand-alone non functional are being described then it would be sensible to name these on the form in the appropriate place.

Functional requirements – Description of the feature or facility required. This will be extended and further developed during requirements analysis. Obviously for some requirements considerable explanation may be required – this will necessitate changing the form or adding continuation sheets.

	Requirements Catalogue Entry

	
	
	
	

	Source

LO Booking
	Priority

H
	Owner

Booking Mgr
	Requirement ID

Req 3

	
	
	
	

	Functional Requirement Vehicle availability Enquiry

	To be able to check the availability of a particular vehicle category at a particular local office for a specific range of dates.

	
	
	
	

	Non functional requirements

	Description
	Target value
	Acceptable range
	Comments

	Service hours
	08:00 – 18:00

Mon - Sat
	09:00 – 17:00

Mon –Sat
	

	Response time
	5 seconds
	10 –12 seconds
	Customer on phone

	Ease of use
	
	30 mins formal training
	May use temporary staff

	
	
	
	

	Benefits

	Will enable any office to take a booking – estimate 10% of potential bookings unable to confirm to customer

	Comments/suggested solutions

	On line access to central database

	Related documents

	DFM 2 make booking. LDM booking – vehicle category – local office.

	Related Requirements

	Req 1. Make booking

	Resolution

	Function definition 3

Table 1 Requirements Catalogue Entry Form

Non-functional requirements – Generally these are only developed in the outline form in the early stages of the project. Often they may be related to functional requirements. Alternatively they may be stand-alone non-functional requirements such as systems constraints. The detailed service level requirements are later transferred to function definitions. Archival and access requirements are later transferred to entity descriptions. Ideally these non-functional requirements should be measurable.

Benefits – A brief description of any business benefits expected from meeting the requirements.

Comments/suggested solutions – A brief description of any possible solution that may be suggested by the users or the project team. This is simply to ensure that valuable ideas are not lost – there is no commitment to meeting the requirement in this way.

Related documents – Cross refers to any other document – e.g. project initiation documents, feasibility reports, data flow models and the logical data model.

Related requirements – Cross-refers to any other requirements which may be associated with this particular one. The vehicle availability enquiry requirement is closely related to the make booking requirement in that availability enquiries often precede making of bookings. This cross-referencing helps avoid duplication of requirements and helps to assess the impacts of any changes to requirements.

Resolution – This is completed after the business systems option stage and shows how the requirement is met. It may cross-refer to other specification documents such as function definitions, parts of the logical data model or technical systems options. If the chosen business system option does not satisfy this requirement then the reasons for its rejection can be discussed.

Identify basic requirements

Develop a working prototype

Use the prototype

User satisfied?

Revise and enhance the prototype

Operational prototype

Step 4

Step 1

Step 2

Step 3

No

Yes

Project

Initiation

Information Systems

Planning

Maintenance and review

Transition

Production

Construction

Physical

Design

Business Systems Design

Systems

Analysis

Feasibility Study

Feasibility study

Stage 0

Feasibility

Requirements analysis

Stage 1

Investigation of current requirements

Stage 2

Business systems option

Requirements specification

Stage 3

Definition of requirements

Stage 6

Physical design

Physical Design

Stage 5

Logical Design

Stage 4

Technical systems option

Logical systems specification

