
Deriving the Electromagnetic Field
from the Liénard–Wiechert potential

Robert Clancy and Howard Thom

February 7, 2010

Given the path of a particle of charge q located at space-time coordinate xµq(τ)
for invariant time τ , the Liénard–Wiechert four potential Aν at coordinate xµ,
µ ∈ {0, 1, 2, 3}, induced by the motion of the charge can be shown to be

4π

q
Aν =

V ν

RσVσ
(1)

where the expression on the right is evaluated at the retarded time τ0 defined by

RσRσ = 0 (2)

and where the argument of the potential relative to the location of the charge is

Rσ = xσ − xσq (τ) . (3)

To find the electromagnetic field F µν at the coordinate xρ resulting from the
expression for the four potential exhibited in equation (1) consider the relative
position four vector Rσ = Rσ(xρ, τ) as a function of xρ and τ . Since the path
of the particle, xµq(τ), intersects the past lightcone of the event xρ once we can
regard the invariant time, τ = τ(xρ), as a function of xρ. Equation (3) provides

∂µR
σ =

∂Rσ

∂xµ
=

∂xσ

∂xµ
−

dxσq
dτ

∂ τ

∂xµ
= δ σµ − V σ ∂ τ

∂xµ
(4)

involving a Kronecker delta and a four velocity of the charged particle denoted by

V σ =
dxσq
d τ

. (5)

Again, taking the partial derivative of equation (2) with respect to xµ yields

(∂µR
σ)Rσ + Rσ(∂µRσ) = 2Rσ(∂µR

σ) = 0 (6)

from which, with an abbreviated from of equation (4), one may conclude that

Rσ

(
δ σµ − V σ∂µτ

)
= Rµ −RσV

σ∂µτ = 0 (7)

resulting in equivalent expressions for the four gradient of the invariant time

∂µτ =
Rµ

RσV σ
, that is,

∂ τ

∂xµ
=

Rµ

RσVσ
. (8)
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Taking the partial derivative of the four potential below will require the derivative

∂µRρ = δ µρ − Vρ
∂ τ

∂xµ
= δ µρ − Vρ

Rµ

RσVσ
(9)

that follows from the use of equations (4) and (8), written with altered indices.
Also required will be a derivative of the four velocity V ν = V ν(τ) in equation (5),
treated as a function of τ(xρ), and again using equation (8)

∂µV ν =
∂V ν

∂xµ
=

dV ν

dτ

∂τ

∂xµ
= V̇ ν Rµ

RσVσ
=

Rµ V̇ ν

RσVσ
(10)

where ˙V µ refers to dV µ/dτ , the derivative with respect to the invariant time.
Evaluating the partial derivative of the four potential Aν in equation (1) reveals

4π

q
∂µAν =

∂µV ν

RσVσ
− V ν

(RσVσ)2 [Rρ (∂µV ρ) + (∂µRρ)V
ρ ] (11)

=
Rµ V̇ ν

(RσVσ)2
− V ν

(RσVσ)2

[
Rρ

Rµ V̇ ρ

RλVλ
+

(
δ µρ − Vρ

Rµ

RλVλ

)
V ρ

]

=
RµV̇ ν

(RσVσ)2
− RρV̇

ρ

(RσVσ)3
RµV ν − V µV ν

(RσVσ)2
+

VρV
ρ

(RσVσ)3
RµV ν .

The third term will not contribute to F µν , being symmetric in indices µ and ν.
Noting that the four velocity of the particle V σ = γ(c, ~v) obeys

VρV
ρ = γ2(c2 − ~v2) = γ2c2γ−2 = c2 (12)

equations (11) and (12) indicate that the electromagnetic field may be written

F µν = ∂µAν − ∂νAµ = F µν
acc + F µν

vel (13)

where the acceleration and velocity elements of the electromagnetic tensor are

4π F µν
acc =

q

(RσVσ)2
(RµV̇ ν −RνV̇ µ)− q RρV̇ρ

(RσVσ)3
(RµV ν −RνV µ) (14)

4π F µν
vel =

q c2

(RσVσ)3
(RµV ν −RνV µ) (15)

with all quantities here being evaluated at the retarded time given by equation (2).
In the case where the particle is at rest with V σ = (c,~0) the radiative part of the
field is zero F µν

acc = 0; the non-radiative part indicates here that the electric field
F i 0

vel gives the expected inverse square law and that the magnetic field F i j
vel is zero.
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