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Given the path of a particle of charge ¢ located at space-time coordinate x/(7)
for invariant time 7, the Liénard—Wiechert four potential A” at coordinate z*,
p €40, 1, 2, 3}, induced by the motion of the charge can be shown to be
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where the expression on the right is evaluated at the retarded time 7, defined by
R°R, =0 (2)

and where the argument of the potential relative to the location of the charge is
R = 2% —a7(7). (3)

To find the electromagnetic field F*” at the coordinate z* resulting from the
expression for the four potential exhibited in equation (1) consider the relative
position four vector R = R7(xz”,T) as a function of z” and 7. Since the path
of the particle, xg(T), intersects the past lightcone of the event x” once we can
regard the invariant time, 7 = 7(z*), as a function of z*. Equation (3) provides
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involving a Kronecker delta and a four velocity of the charged particle denoted by

dz?
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Again, taking the partial derivative of equation (2) with respect to x* yields
(OLR°)Ry; + R°(O,R,) = 2R, (0,R°) = 0 (6)
from which, with an abbreviated from of equation (4), one may conclude that
R, (65 — V“@,ﬁ) =R, —R,V°0,7 =0 (7)
resulting in equivalent expressions for the four gradient of the invariant time
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Taking the partial derivative of the four potential below will require the derivative
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that follows from the use of equations (4) and (8), written with altered indices.
Also required will be a derivative of the four velocity V¥ = V() in equation (5),
treated as a function of 7(z”), and again using equation (8)
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where V& refers to dV*#/dr, the derivative with respect to the invariant time.
Evaluating the partial derivative of the four potential A” in equation (1) reveals
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The third term will not contribute to F*¥, being symmetric in indices 1 and v.
Noting that the four velocity of the particle V7 = 7(c, ¥) obeys

VP = (= 17) = 7Py = (12)
equations (11) and (12) indicate that the electromagnetic field may be written
Fr = grAY — VA" = FM + FiY (13)

where the acceleration and velocity elements of the electromagnetic tensor are
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with all quantities here being evaluated at the retarded time given by equation (2).
In the case where the particle is at rest with V7 = (¢, 0) the radiative part of the

field is zero FY = 0; the non-radiative part indicates here that the electric field

F19 gives the expected inverse square law and that the magnetic field "/ is zero.
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