Is Light Heavy?

A. Cooney, J. Dudley, T. Fleming, P. Flynn, S. Keating (Sch).
March 2, 2001

Abstract

It is always valid to ask if we are justified in assuming a zero rest mass for
the photon. We follow Proca’s treatment of a massive vector field with external
source and derive the Symmetric Stress Tensor, its Conservation Laws, and the
Equations of Motion. We then use these to predict the effect a heavy photon
would have on the Earth’s Magnetic Field, following a method proposed by
Schrédinger. Using information on the Earth’s Magnetic field, we put an upper
limit on the mass of the photon of 74.10748 g,
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. being heavy, I will bear the light ...” proclaimed the melancholy hero in
Shakespeare’s Romeo and Juliet. Is light heavy? What evidence is there to support
the assumption of Classical Electrodynamics that the photon has a zero rest mass?
These are valid questions and we shall consider them here. First, we will assume
that the photon has indeed a non-zero rest mass and derive its properties. Then,
in section 2, following a method proposed by Schrodinger we will predict the effect
a massive photon would have on the Earth’s magnetic field and use recent data to
place an upper limit on the photon’s rest mass.

1. The Proca Lagrangian

In 1930 Proca considered a Lagrangian density for a massive vector field, in in-
teraction with some external source J,. To calculate any observable effects of a
heavy photon we will need to consider such a Lagrangian density. For completeness,
we derive the Symmetric Energy-Momentum Stress Tensor (with its time-time and
space-time components in terms of E and B) and the differential conservation laws
it obeys, as well as the equations of motion which we will need for the next section.

(a) The Stress Tensor

The Proca Lagrangian density for a massive vector field in interaction with an
external source is given as
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with m = m.c/h, the Compton wave number of the photon, and m., the field mass.



Now, define the Energy-Momentum Stress Tensor as
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So, we may construct the Symmetric Energy Momentum Stress Tensor by defining
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So, finally, we have that
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(b) Equations of Motion

For the Proca Field we have the Euler-Lagrange equations of motion as
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So, the Proca equations of motion for the massive field are given as,
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(c) Conservation Laws

Look at the differential conservation laws for the massive vector field,
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by the equations of motion. Therefore,
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which gives finally:
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and in particular if we employ the Lorentz gauge we have that:
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as for the massless electromagnetic field.



(d) Components

Here we give the time-time components of the Proca symmetric stress momentum
energy tensor
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2. On a Geomagnetic Limit for the Photon Rest Mass

In 1943 Schrédinger proposed a method of estimating the mass of a photon. This,
he claimed, would have a measurable effect on the Earth’s magnetic field, and using
sparse and innaccurate data puts forward a conservative estimate. We improve his
method using the machinery we developed in the previous section, and propose a
significantly smaller number for the mass of the photon with the aid of more accurate
data from recent satellite and surface observations.

(a) Massive Vector Potential

The Proca equations of motion are:
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We require a Green’s Function satisfying
(V* = 1i)G(r) = —4md(r)
Consider r#0 :
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as G = G(r) we can write
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the (spherically symmetric) Yukawa potential. We require K = —ﬁ so that :
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thus

If there is a magnetisation M = 1m.f(Z) where 17 is a fixed vector and f(Z) is a
localised scalar function then
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noting that in a steady state distribution of current the Lorentz guage becomes the
Coulomb guage, so
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and we obtain
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(b) Magnetic field

If the magnetic dipole is a point dipole at the origin then f(z) = 0(z) and
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where we have used the identity
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and the fact that m is a constant vector. Consider now
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using Einstein’s summation convention (a=1,2,3) with éb the usual orthonormal
basis vectors. Thus
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(c) Photon mass limit

J. D. Jackson tells us that
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(upper limit) on the surface of the earth (r=R). Thus
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yielding,



(R = 0.0806

This gives us a lower limit on g~ lof
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earth radii. Schrodinger, in his study, calls this the “characteristic length”. It is, of
course, the reciprocal Compton wavelength of a photon
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Thus, an upper limit of the rest mass of the photon is
m~4x107% g

|A review of past and current studies of possible long-distance, low-frequency de-
viations from Maxwell electrodynamics and Einstein gravity has appeared in [4],
NHB.|
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