Example Markov Matrices Nigel Buttimore

The following matrix with rows of elements summing to unity is Markov for n > 0

) n—a—=ot a b
M = - a n—2a—c a-+c
n
c a n—a-—=c

Values of a, b, ¢, are such that, 0 <a, 0<b, 0<¢, a+b<n, 2a+c<n,and
are often assigned to integers in examples. The case n = 10 provides convenient
decimal fractions. The Perron Frobenius theorem indicates that there is a unit
eigenvalue of a Markov matrix and so the eigenvalues of M are

1, A=1—-(a+b+c)/n, N=1-Ba+c)/n.

In the case of unequal eigenvalues, b — 2a # 0, the corresponding right eigenvectors
of the Markov matrix M, appropriately normalised, form the columns of the matrix

(b— 20)! b—2a (b—2a)(a+b) + ala—c) —ala+b+c)
P:?b“+C b—2a (b-2a)(—a)— (2a+c)a—c) (2a+c)(a+b+c)
b—2a (b—2a)(—c) + ala—c) —ala+b+c)

and the corresponding left eigenvectors of M form the rows of the inverse matrix

(a+c)* ab—2a)+aBa+c) (b—2a)(2a+ c)+ a(ba+ 3c)
3a+ ¢ 0 —(3a+c¢)
a—c b—2a —(b—2a) — (a—c)

P*l

- 3a + ¢

so that the matrix M may be diagonalised with eigenvalues being on the diagonal

] n 0 0
P'MP = |0 n—a—-b—c 0
n
0 0 n—3a—c

In the case, b — 2a = 0, the two non-leading eigenvalues are equal, and the matrix

1 n — 3a a 2a
M= — a n—2a—c a-+c
n
c a n—a—=c

has only two linearly independent eigenvectors, the second and third columns of the
matrix P becoming proportional, as occurs with the second and third rows of the
matrix P~!. The two right eigenvectors appear in the first and second columns of

| a —a 3a — at
P = a 2a+c —a+ (2a+ o)t
3a+c¢
a —a —c—at

Freedom in the choice of the third column is characterised by an arbitrary parameter
t whose value should be the same as that appearing in the second row of the



inverse matrix, in which the equilibrium left eigenvector of M and its non-leading
eigenvector form the first and third rows. For convenience d = 3a + ¢ is introduced

a+2c+c/a d 5a+3c
Pfl — 8 a—c—dt d _4a/+dt R
d 0 —d

The Markov matrix M is not diagonisable if a # ¢ (again in the case b = 2a) and
may be rendered in Jordan form through the similarity transformation

] n 0 0
P'*MP = =|0 n—d (a—c)(l+at/d)
n
0 0 n—d

In the case where t = 0, an integer power k of the matrix M may be evaluated from

Ak a —a 3a 1 0 0 (a+c)*/a d ba+ 3c
el 2a+c —a 0 M k(a—c)\1/n a—c d —4a
a —a —c 0 0 AF d 0 —d

where the eigenvalues are 1 and A =1 — d/n (twice).
In the case where b — 2a = 0 and a = ¢, the Markov matrix M takes the form

] n — 3a a 2a
M = - a n — 3a 2a
n
a a n — 2a

which may be diagonalised by the following simpler matrix P and its inverse P!

. 1 -1 3 . 1 1 2

P==-11 3 -1 Pl'==-]10 1 -1
2 ’ 2

1 -1 —1 1 0 —1

the three eigenvalues appearing on the diagonal being 1, 1 — 4a/n, and 1 — 4a/n.
A connected Markov chain is reversible if its equilibrium eigenvector v; satisfies

v; M;; = vj M;; foreachi, j=1,2, 3,

and reversibility in the example above is ensured by the condition, ab = c(a+c¢). A
reversible Markov matrix can be symmetrised by a similarity transformation that
uses a diagonal matrix formed from the square roots of elements of its equilibrium
eigenvector, together with the inverse diagonal matrix. Valuesa =1,b =12, ¢ = 3,
and n = 20, provide an example of the symmetrisation of 20 M whose equilibrium
left eigenvector, according to the first row of the matrix P~1 above, is (16, 16, 64)

-1

4 0 0 71 12 4 0 0 71 6
0 40 1 15 4 0 40 =11 15 2
0 0 8 3 1 16 00 8 6 2 16

The resulting matrix may, of course, be diagonalised in the usual way.



Sample Markov matrices are exhibited, but for a factor of n = 10, together
with the matrices that diagonalise them, or bring them to Jordan form. In the
first matrix, the first row is the equilibrium eigenvector of M while the following
rows provide other left eigenvectors. The matrix in the middle on the left is 10 M.
The columns of the third matrix include the right eigenvectors of M. The diagonal
matrix on the right hand side includes the eigenvalues of M scaled up by a factor
of n = 10.

The selection a = 1, b = 4 and ¢ = 2, provides a matrix with unequal eigenvalues

. 9 7 19 5 1 4 2 9 =7 ) 10 0 0
= 5 0 -5 1 6 3 2 2 28 = o 7 0
-1 2 -1 2 1 7 2 =5 -7 0O 0 5

The choice a = 1, b = 2, ¢ = 1, gives a Markov matrix with equal sub-leading
eigenvalues resulting from b = 2a that is furthermore diagonalisable since a = c,

1 1 1 2 T 1 2 1 -1 3 ] 10 0 0
3 0 1 -1 1 7 2 1 3 -1 5 = 0 6 0
1 0 -1 1 1 8 1 -1 -1 0 0 ©6

The selection a = 1, b = 2, ¢ = 2, gives a Markov matrix with equal sub-leading
eigenvalues induced by b = 2a, and is not diagonalisable since a # c,

] 9 5 11 7T 1 2 1 -1 3 1 100 0 0
R -1 5 -4 1 6 3 1 3 -1 F = 0 5 -1
5 0 =5 2 1 7 1 -1 =2 0O 0 5

The selection a = 2, b = 4, ¢ = 1, gives a Markov matrix with equal sub-leading
eigenvalues caused by b = 2a, that again is not diagonalisable since a # c,

1 9 14 26 4 2 2 1 -2 6 ] 10 0 0
- 1 7 =8 2 5 3 1 5 =2 - = 0o 3 1
7T 0 =7 1 2 7 1 -2 -1 o 0 3

Values a =1, b = 2, ¢ = 1, n = 10, indicate an example of such a matrix with equal
eigenvalues where reversibility ensures that it is diagonalisable, that is, a = c.

Values a =1, b =6, ¢ = 2, n = 10, give another example of a reversible Markov
matrix whose transpose and leading eigenvector is shown. A re-arranged form is in
the second example. Valuesa =1, b= 2, ¢ = 1, n = 10, indicate an example of such
a matrix with equal eigenvalues where reversibility ensures that it is diagonalisable,
that is, a = ¢. Again, the transpose and leading eigenvector is exhibited.
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