
Chapter 9
Factorisation and Discrete Logarithms

Using a Factor Base

February 15, 2010

9

The two intractable problems which are at the heart of public key crypto-
systems, are the infeasibility of factorising large integers and of solving the
discrete logarithm (DL) problem. In Chapter 8 some simple schemes for
solving these problems were presented. In this chapter the more powerful
(and complex) methods based on factor bases are presented.

9.1

It is shown below that the time (T) taken by these methods can be ap-
proximated by ln T = c(ln n)a(ln ln n)1−a, this is sometimes written as
ln T = L(c, a, n), where a = 1

2
and c is 2,

√
2 or 1 depending on the method.

(In the faster and even more complex Number Field Sieve a = 1
3
.)

These methods are known as “sub-exponential”. If a = 1 we have T = nc;
the time depends exponentially on the absolute value of n. If a = 0 we have
T = (ln n)c; the time depends exponentially on the log, i.e. the length of n ,
i.e. much faster. For intermediate values of a we have a compromise: Faster
than exponential but not as fast as ordinary arithmetic.

The existence of these sub-exponential techniques is a weakness in many
crypto systems based on modular arithmetic. One of the attractions of using
Elliptic Curves (EC) techniques for cryptographic algorithms is that there
are no known sub-exponential methods of attack.(See Chapter 10).

1

9.2 Factorising Large Integers

(We assume that n, the integer to be factorised, is tested in advance to ensure
that it is not a prime, e.g. using Rabin’s test.)

Most factorising algorithms - and certainly the most important ones which
can be applied to very large integers - aim to find integer solutions x, y (with
x, y < n) to the equation

x2 = y2 mod n (0.1)

Since this can be written (x + y)(x − y) = 0 (mod n) we can then factorise
n by finding HCF ((x− y), n) using the Euclidean algorithm. ((x+ y) = n
and x = y are obviously “bad” solutions to equation ?? and are discarded if
they arise.) The method used to solve equation ?? involves creating a series
of congruences

x(i)2 mod n = y(i) =
∏

(p(j)e(i,j)) < n (0.2)

where the product is over j = 1, m and p(j) stands for the jth prime number.
That is, y(i) is represented in terms of a Factor Base of m primes. If this
can be done for a good number, M say, of x(i), then the solutions can be
“cobbled together” multiplicatively to produce a right-hand side that is all
squares, thus

∏
(Over selection of x(i)2) =

∏
(over j = 1,m)(p(j)f(j))2 mod n (0.3)

for some f(j). Equation ?? has the required form of equation ??. It is clear
that constructing the “selection” is equivalent to raising each y(i) to a power
c(i) = 0 or 1 and solving∑

(over i)(c(i).e(i, j)) = 2f(j) = 0 mod 2

for c(i), with j = 1,m. For M greater then m this can always be done; but to
avoid “bad” solutions it may be necessary to use M = 2m, say. Therefore the
time taken by the procedure is determined by m, the size of the factor base,
which in turn controls the probability of finding the congruences (equation

2

??). If m is small the probability of finding a relatively random y(i) which can
be expressed as in equation ?? is very small. (Remember that the probability
of an arbitrary integer, X, not having a prime factor greater than its square
root is about 0.3; while the probability of its not having a prime factor greater
then X

1
9 is about 10−9.) But make m large and the factor base is large and

the calculations become very lengthy. Somewhere in between is an optimum
value for m.

Differing techniques are used by the various factorising methods based on
equation ?? to generate the congruence (see equation ??). The essence of
these differences is the way in which each tries to ensure that y(i), while still
relatively random, is confined within some range significantly smaller than
(0, n), so that the probability of equation ?? holding is not too small.

9.3 Factorising - Dixon’s Random Method

An understanding of the issues raised above can be helped by considering the
situation where the x(i) are chosen randomly, so that the y(i) are also random
in (0, n). The reasoning which follows is heuristic and has no pretensions to
rigour.

The number of integers less than n which have prime factors less than or
equal to p(m), N say, is the numbers of solutions n(j) to the inequality∑m

j=1(n(j).ln(p(j))) ≤ ln n

Therefore, replacing p(j), j = 1 to m, by the larger p(m), we get N ≥
Number of integer solutions to :∑

(n(j)) ≤ (ln n
ln p(m)

) = r, say

Using ordinary combinatorial arithmetic we get N ≥ (m+r)!
m!r!

, a binomial co-

efficient, which is greater than (mr)
r!

. In other words, the probability P (n,m)
that an integer lass than n can be factorised using the first m primes only is
given by

P (n,m) ≥ (mr)
n.r!

= 1
r!

since r = ln n
ln m

, if we take p(m) = m(ln m), so that ln (p(m)) = ln m
approximately.

The random y(i) are “sieved” (trial divisions by the first m primes) to test
if they can be factorised solely in terms of those primes. Each such sieving
takes a time of the order of (m.(ln n)). A selection is then made from the M
equations ?? to form equation ??. In modulo-2 arithmetic the time taken is

3

insignificant. In the worst case, when n is the product of only two primes, so
that each quadratic residue has four roots of which two are “bad”, there is
a probability of failure to produce a satisfactory y equal to 0.5. k repeated
attempts with different selections reduce this probability to 2−k. Thus we
may take M = Order (m). With this approximation the central part of the
factorising process takes a time, T , allowing for the probable failure of the
sieving operation:

T=(m2)(ln n
P (n,m)

) (0.4)

Putting r! = rr, and making some other gross approximations, e.g. ignoring
terms in (ln ln n) in comparison with those in (ln n)(ln ln n), on taking
logarithms, we find

ln T ≤ 2x+(ln n) ln ln n−ln ln m
x

(0.5)

where x = ln m. We find a minimum for ln T with respect to x in two
stages. Firstly, we shall ignore the (ln ln m) term and find we need ln m =

((ln n) (ln ln n)
2

)0.5. Then we substitute θ(ln m) into equation ?? and minimise
with respect to θ to get θ = (1

2
)0.5 and

ln m = ((ln n)(ln ln n)/4)0.5 (0.6)

Substituting in equation ?? gives

ln T ≤ (4(ln n)(ln ln n))0.5 (0.7)

Equation ?? shows that the randomising process of equation ?? enables us
to use successfully a factor base with value of m very much smaller than
the number of primes less than n, π(n), necessary for guaranteed successful
sieving; since ln π(n) = ln n − ln ln n. Obviously if we can find a method
of confining the y(i) to a range less than (0, n), for a given value of m we
would have a much higher probability of success in satisfying equation ??.
Conversely, we could reduce m significantly and still maintain the probability
of success achieved with Dixon’s random method.

4

9.4 Factorising - The method of Continued Fractions
(CF)

In this method, x(i) of equation ?? is the integer numerator A(i) of a rational

number A(i)
B(i)

, representing the ith continued fraction approximation to the

quadratic irrational (k.n)0.5. Successive pairs of such values A(i), B(i) are
generated by a standard continued fraction algorithm, which in fact can
be simplified to omit the calculation of the unwanted B(i). Here k is a
convenient integer constant, which when suitably and mysteriously chosen
gives a better success rate for factorisation over the factor base.

Because A(i)
B(i)

is a good approximation to (kn)0.5 it can be shown that

x(i)2 = A(i)2 = e.(2(kn)0.5)) mod kn, where e < 1. In the case when
k = 1 we have x2 mod < 2n0.5. In turn this means that if we repeat the
approximate analysis of the last section, we use r = ln n

2.ln m
, and equation ??

now becomes

ln T ≤ 2x+ (ln n) ln ln n−ln ln m
2x

(0.8)

giving for the new equation ?? ln m = ((ln n)(ln ln n)/(8))
1
2 and for the

new equation ?? ln T ≤ (2(ln n)(ln ln n))0.5

In short, because the continued fractions produce good approximations
to n0.5, the range of x2(mod n) is significantly reduced, m can be reduced,
and ln T is reduced by a factor 20.5.

The CF algorithm runs as follows:

If (kn)0.5 is approximated by a continued fraction (q(0), q(1), . . . , q(m)) =
A(m)
B(m)

, with the q’s integers, then the usual recurrence relation A(m) =

q(m).A(m − 1) + A(m − 2), enables A(m) to be found. q(m) itself may
be found from

q(m) = b(q(0) + γ(m)
δ(m)
c

with γ(m) = q(m− 1)δ(m− 1)− γ(m− 1)
and δ(m)− δ(m− 2) = q(m− 1)(γ(m− 1)− γ(m))

Using these auxiliary quantities γ, δ it can be shown that A(m)2 mod n =
δ(m+ 1).((−1)m+1) so that A(m)2 mod n may be found directly by iterating
the above three equations. The initial values are q(0) = b(kn)0.5c, γ(0) =
0, γ(1) = q(0), δ(0) = 1, δ(1) = kn− q(0)2.

5

9.5 Factorising - The Quadratic Sieve (QS)

In Dixon’s method the x(i) of equation ?? is chosen randomly giving y(i)
of Order (n). In CF the x(i) is a CF numerator giving rise to a y(i) of
Order (n0.5). In QS the x(i) are successive values (n′ + t) where n′ = bn0.5c,
the integral part of n0.5, and t is systemically incremented and decremented.
This gives rise to y(i) = ((n′ + t)2 − n), so that it has negative as well as
positive “small” values, also of Order (n0.5). We may except QS to take the
same as CF.

However, the systematic movement of t in the search for y(i) which fac-
torise completely over the factor base, allows for a very efficient calculating
procedure, and QS is in fact faster than CF, particularly for large n.

The procedure uses logarithms. A very large table is built and is ini-
tialised with a block of the log (y(i)) corresponding to successive values of t.

For each prime p in the factor base we do the following:

1. Solve (n′+ z)2 − n = 0 mod p for z1 and z2.

2. z1 is an index into the table and points to a y(i) divisible by p, so
subtract log p from that entry, and also from all entries with index
(z1 + kp) for positive and negative k up and down the block; since
those entries too are divisible by p.

3. Repeat step two using z2.

When all p in the factor base have been tried, those entries in the table which
are zero (or nearly) are factorisable over the base. Save the corresponding
x(i) = (n′ + t) and the prime factors of y(i).

Process the next adjacent block of y(i), initialising the table with new
log (y(i)), and remembering the appropriate starting index for each p, from
the last block; etc.

Special cases, such as when y(i) has repeated prime factor, when 2 is a
prime factor, and when y(i) factorises over the base except for a residual
single large prime, can be accommodated.

In the QS method because of the sieving procedure, which uses determin-
istic logarithmic subtraction rather than trial division, we may perhaps take
the times per values sieved as (ln m), rather the m(ln n).

Thus T = m(ln m
P (n,m)

) and ln T ≤ x+ (ln n) ln ln n−ln ln m
2x

instead of equa-
tion ??. Carrying out the same minimisation procedure we get

6

ln m=((ln n)(ln ln n)/4)0.5

and ln T ≤ ((ln n)(ln ln n))0.5

QS is the fastest of the sub-exponential sieving techniques with ln T =
c((ln n)(ln ln n))0.5 because of this systematic approach to the sieving. How-
ever the Number Field Sieve (NFS) technique is substantially faster for really
large n.

9.6 Finding Discrete Logarithms

The best algorithms for finding ‘normal’ discrete logarithms also employ
a factor base of prime numbers, as used for factorisation. (It is the use
of this factor base, and the multiplying together of elements expressed in
terms of this factor base, which enables sub-exponential algorithms to be
found. Conversely, DL-based crypto-systems based on elliptic curves or Lucas
series, which do not permit this factor base representation, and for which
multiplication of elements does not exist or is not ‘closed’, can not be attacked
with sub-exponential algorithms.)

The ‘normal’ discrete logarithm problem is: Find x, given a, b and p in
the equation

ax = b mod p (0.9)

For simplicity we take p to be a prime.
The basic algorithm for solving for x has three stages. In the first two

stages the discrete logarithms N(i) (to the base a) of the members p(i) of
the factor base are calculated. In the last stage the discrete logarithm of b is
found.

Stage 1
We pick random n(i) < p− 1 and try to express an(i)mod p in terms of the
factor base of the first m primes until we get M ≥ m successes:

an(i) mod p =
∏m
j=1 p(j)

e(i,j) i = 1,M (0.10)

This is the same procedure as the central part of Dixon’s method for factori-
sation except that we use an(i) instead of x(i)2. Consequently the time T1

7

taken by stage one can be expressed using equation ?? as:

ln T1 = (4(ln p)(ln ln p))0.5 (0.11)

Note that this is the minimum time occurring when ln m = ((ln p)(ln ln p)/(4))
1
2 ,

as per equation ??.

Stage 2
We suppose p(j) = aN(j) for some N(j). (This is certainly true if a is primi-
tive, if a is not primitive see below). Substituting in equation ?? and taking
logarithms gives

n(i)=
∑m
j=1N(j).e(i, j)mod (p−1) (0.12)

These linear equations are then inverted to find the N(j). The inversion is
performed modulo each of the prime factors of (p − 1), and the results are
put together using the Chinese Remainder Theorem. The time taken is T2
and is given by

ln T2 = 3(ln m) (0.13)

No proper minimum exists for T2, we want m as small as possible. But
if we take Stage 1 minimum value for m, given by equation ?? we find

ln T2 = (2.25(ln p)(ln ln p))0.5 (0.14)

Stage 3
We now have from Stage 2 p(j) = aN(j), so we take an arbitrary s and try to
express b.asmod p in terms of the factor base. We try sufficient values for s
until we have success:

8

b.asmod p =
∏m
j=1 p(j)

e′(j) = Product aN(j).e′(j) (0.15)

Taking logarithms we have

x+s =
∑m
j=1N(j).e′(j) mod (p−1) (0.16)

which gives us x. The time taken for Stage 3 is T3 (representation of a single
quantity in terms of the factor base instead of m quantities as in equation
??) which is given by T3 = mm(ln p)

P (p, m)
.

Using the Stage 1 minimum value for m we find

ln T3 = (2.25(ln p)(ln ln p))0.5 (0.17)

which is the same as in ln T2 (see equation ??). Thus the (non-minimum)
values for T2 and T3 are less than the minimum value for T1 given by
equation ??; so the total time, T , for all three stages is determined by Stage
1 and we may say

ln T= ((4)(ln p)(ln ln p))0.5 (0.18)

Equation ?? shows that there is a sub-exponential solution to the basic DL
problem, which takes the same time as Dixon’s factorisation essentially be-
cause it also uses a random approach (the n(i)). A very similar but alterna-
tive approach to Stage 3 (known as “Index Calculus”) raises b to the arbitrary
power s, and tries to express this in terms of the factor base:

bsmod p =
∏m
j=1 p(j)

e′′(j) =
∏
aN(j).e′′(j)

then s.(log b) =
∑m
j=1(N(j).e′′(j)) mod (p− 1)

so (log b) = x can be found if s has an inverse s−1mod (p− 1).

If a is not primitive we find c primitive mod p and use the method to find r
in a = crmod p. Then the problem pj = aNjmod p becomes pj = cN

′
jmod p

with N ′j = rNj. Solve for N ′j and then find Nj = r−1N ′jmod (p− 1).

9

9.7 Coppersmith’s Method for DLs

A more efficient method of solving the DL problem has been presented by
Coppersmith. The method sieves integers of Order (p0.5), with a linear
logarithmic sieve as in QS, and the net result is that the run-time and the
size of the factor base are those of the QS factorisation program, namely:

ln m = ((ln p)(ln ln p)/4) 0.5 (0.19)

ln T1 = 2(ln m) (0.20)

This is to be compared with ln T1 = 4(ln m) which we had before. As
a result the matrix inversion of Stage 2 (with ln T2 = 3(ln m)) is now the
slowest part of the program. Using techniques, such as those due to Cornelius
Lanczos or Wiedemann, for solving linear equations with sparse matrices en-
ables the overall time to be reduced to being proportional to m2, with m
given by equation ??.

References The best introductory reference is Knuth’s “Semi-numerical Al-
gorithm” Volume 2 of “The Art of Computer Programming”. The publisher
is Addison Wesley. Look in the index. It also contains referrences to other
more detailed publications.

For a general introduction to continued fractions see Davenport’s book “The
Higher Arithmetic”. Cambridge University Press.

For the quadratic sieve see “Factoring Large Numbers with a Quadratic
Sieve” by Joseph L. Gerver, Mathematics of Computation, Volume 41, Num-
ber 163, July 1983, Pages 287-294.

For the discrete logarithm see “Discrete Logarithms in GF(p)” Don Cop-
persmith et al., Algorithmica, (1986) Vol 1:1-15.

Example Factorising Using Quadratic Sieve (Manual)
Factorise 1769 = n; b

√
nc = 42; Factor Base = 2, 3, 5, 7, 11, 13

10

362 = −473 = -11 ×43 NF (not factorisable)
372 = −400 = -24 × 52

382 = −325 = -52 × 13
392 = −248 = -23 × 31 NF
402 = −169 = -132

412 = −88 = -23 × 11
422 = −5
432 = 80 = 24 × 5
442 = 167 NF
452 = 256 = 28

462 = 347 NF
472 = 440 = 23 × 5× 11

First Try
412 × 422 × 472 = 26 × 52 × 112 mod 1769

or (1329)2 = (440)2 mod 1769
or (1769)×0 = 0 mod 1769

Second Try
372 × 402 = 24 × 52 × 132

(1480)2 = (260)2

(1480 - 260)×(1480 + 260) = 0 mod 1769
1740×1220 = 0 mod 1769

24 × 3× 52 × 29× 61 = 0 mod 1769
1769 = 29×61

11

