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Elliptic Curves (ECs) can be used as an alternative to modular arithmetic
in all applications based on the Discrete Logarithm (DL) problem.

The DL problem is:
Given n, b, α; find x from b = αx mod n.

The EC equivalent is:
Given points P, Q on an EC. Find N from Q = NP .

Here NP means “add the point P to itself N times”. Clearly we need a
definition of the meaning of “adding points”. The EC equivalent of “mod n”
is obtained by working over a finite field GF (q); so that all points P =
(x, y) on the curve have x, y ∈ GF (q). The EC used is a discrete set
of points satisfying y2 + xy = x3 + ax2 + b, with q = 2m, so that GF (q)
has characteristic equal to two. Hasse’s Theorem states that Order(EC) =
Number of points on the EC ≈ q ± 2

√
q. The points on the EC form a

group under the addition rule, and of course the order of any point divides
the order of the group.

The fact that ECs use repeated addition (to provide multiplication) whereas
in modular arithmetic we use repeated multiplication (to provide exponenti-
ation) should, in principle, explain the advantages of using ECs - they should
result in faster calculations. In fact this is only marginally so, because EC-
addition is complex and involves multiplication (in GF (q)).

The real advantage of ECs in cryptography is that there are no known
sub-exponential attacks on ECs as there are when modular arithmetic is used.
These sub-exponential attacks rely on factorising over a factor base and no
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such concept exists in ECs. Therefore ECs, using numbers of a given size,
are more secure than the corresponding modular arithmetic schemes, when
applied to the DL problem. Alternatively, an EC-DL-based system can have
the same security as a Modular Arithmetic DL - based system - but with
smaller numbers, and so be much faster.

10.1 Elliptic Curves

(It is easiest to introduce ECs over real numbers before considering ECs over
finite fields).

An EC over the real plane can be simplified to have equation y2 = x3 +
ax + b. It lies to the right of a vertical line given by x3 + ax + b = 0. It is
mirrored in a horizontal line given by y = 0. Any straight line cuts the curve
in three points (if we include “the point at infinity”= θ as a point, to handle
vertical lines.)

Addition of points is defined by “The sum of any three points on the
curve, on the same straight line, is zero”. Therefore if P1 and P2 are two
points on the curve, P3(= P1 + P2) is defined as the negative (or mirror
image in y = 0) of the point at which the line (P1P2) cuts the curve again.
The negative of a point is its mirror image in y = 0. P + (−P ) = θ, so in
this sense θ is the group identity element.
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The point Q = 2P is defined similarly, but the line is now the tangent at
P .

Clearly, given P1(= (x1y1)) P2(= (x2y2)) P3’s coordinates can be simply
determined by algebra.

In the appendix an example is given of an EC, but this time it is over
GF (2m) with m = 4 specifically. Moreover the Finite Field GF (2k) is rep-
resented in a peculiar way (see appendix) using an Optimal Normal Base
(ONB) given by the irreducible, but non-primitive, polynomial f(x) = x4 +
x3 +x2 +x+1. ONBs are not necessary for EC calculations over finite fields,
but they make the calculations faster (if more obscure).

10.2 Sample Applications

(See Chapter 5 for Modular Arithmetic Equivalent)

1. Diffie-Hellman with ECs
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A and B share an EC (conceptually of course) and a point P on it.
They establish a new point Q on it which is a secret shared by them
alone, as follows

A B
Invents c (integer) Invents d (integer)
Sends point cP to B Sends point dP toA

↘ ↙
↙ ↘

A forms Q=c(dP) B forms Q=d(cP)
c, d are integers. The secret point Q can be used as a source of data,
example: for a secret key - by merging the x, y coordinate values of Q
together using some agreed algorithm.

An attacker who sees the points cP, dP in transit, and who knows the
curve and P , still cannot find c or d (the DL problem). So the attacker
cannot find Q.

10.3 D.S.A. with ECs

There exist a common EC and a base point P . The order of P = n.

10.3.1 DSA - Sign

Signatory’s private key = d (integer)
Public key = dP =Q
Message = m

(a) Invert k (integer) and form k−1 mod n

(b) Form R = kP (R = (x, y) say)

(c) Convert x to integer z

(d) r = z mod n

(e) s = k−1(Hash(m) + dr)

(f) Signature = (r, s) two integers

10.3.2 EC-DSA-Validate

(a) Receive m and signature (r, s)

(b) c = s−1mod n
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(c) u1 = H(m).c mod n, u2 = r.c mod n

(d) Compute
R = u1P + u2Q

= u1P + u2dP
= (H(m)c+rcd)P
= s−1(H(m) + rd)P
= kP

(e) If R = (x, y) convert x to integer z

(f) v = z mod n

(g) Test if r = v, if yes then signature is correct.

10.4 (Shanks’) Algorithm to Solve DL Prob-

lem in ECs

Suppose S = xP . How to find x?

Suppose Order (P ) ∼ n. Let d = n
1
2 and suppose x = qd + r where

0 ≤ q < d and 0 ≤ r < d.

Then we tabulate jP for 1 ≤ j ≤ d− 1 and form (S + (n− id)P ) for i
increasing from zero and we look for (s + (n− id)P ) = jP for some j
in the table.

When this occurs it means that
S+(n-id)P = (n+(q-i)d+r)P

= ((q-i)d + r)P
Therefore q = i (since the table only contains jP with j less than d)

and r = j

So x has been found, x = qd+ r.

But this algorithm taken time T ∝ n
1
2 or log T = 1

2
log n. (Compared

with log T = a(log n log log n)
1
2 using a factor base.)

Therefore EC-DL problem is more secure for similarly sized n, than is
the Modular Arithmetic DL problem.

5



Appendix X

Elliptic Curves Over GF (2m)

(a) Curves: y2 + xy = x3 + ax2 + b
For given x, y has two roots y1, y2 with

y1 + y2 = x i.e. y1 = x+ y2 (0.1)

(b) Curve cut by y = mx+ c at
m2x2 + [2mxc = 0, since characteristic = 2] + c2 + mx2 + cx =
x3 + ax2 + b
or x3 + x2(m2 +m+ a) + cx+ b+ c2 = 0
Therefore x3 + x2 + x1 = m2 +m+ a or

x3 = m2 +m+ a+ x2 + x1 (0.2)

where y = mx+ c is a line linking P1(x1y1) and P2(x2y2)
y3 = x3 + (mx3 + c) (to get other root, not on line see equation
?? above)
y3 = mx3 + [mx1 + y1 = c] + x3

y3 = m(x3 + x1) + y1 + x3

y3 = m(x3 + x2) + y2 + x3 (0.3)

Here m = (y2 + y1)/(x2 + x1) (0.4)

But if x1 = x2.
2y dy

dx
+ x dy

dx
+ y = 3x2 + 2ax = x2

x dy
dx

+ y = 3x2 = x2
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Therefore dy
dx

= x2+y
x

, ( dy
dx

)x1 = x1 + y1

x1

i.e. m=x1 + y1/x1 (0.5)

Then x3 = m2 +m+ a (0.6)

y3 = (m+ 1)x3 +mx1 +y1 = (m+ 1)x3 +x2
1 (0.7)

To check this works:

P1 + P2 ⇒ P3 as above. Test P3 + (−P1) =?
P3 + (−P1) = (x3, y3) + (x1, x1 + y1) (from equation ??)

m∗ = y3+x1+y1

x3+x1
= (m+1)(x3+x1)

x3+x1
= m+ 1 (using equation ??)

Therefore xP3−P1 = m∗2 +m∗ + a+ x3 + x1

= m2 +m+ a+ x3 + x1

So xP3−P1 = x2

and yP3−P1 = m∗
x2

+m∗
x3

+ y3 + x2 (equation ??)
= mx2 +mx3 + y3 + x3

= y2

Therefore P3 + (−P1) = P2 Correct.

Example Curve Curve is y2 + xy = x3 + α3x2 + α6

α0 = 1111 α = 1100 α2 = 0110 α3 = 0100
α4 = 0011 α5 = 1010 α6 = 0010 α7 = 0111
α8 = 1001 α9 = 1000 α10 = 0101 α11 = 1110
α12 = 0001 α13 = 1101 α14 = 1011 α15 = 1111

This representation is based on an Optimal Normal Base (ONB) for
GF (24). An ONB allows faster calculations. For example, squaring is
a right-rotation.

The points on the curve are:
(0, α3) (α3, α13) (α5, 0) (α13, α5) (α4, α8) (α14, α2) (α0, α12)

(α3, α8) (α5, α5) (α13, α7) (α4, α5) (α14, α13) (α0, α11) Point at infinity
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0.0.1 Sample Calculation

Take P = (1, α11), then 2P is
x3 = m2 +m+ α3

y3 = x2
1 + (m+ 1)x3 = 1 + (m+ 1)x3

m = 1+α4 = α12

x3 = α13

y3 = α7 2P = (α13, α7)
and 3P=2P+P x3 = m2 +m+ α3 + 1 + α13

y3 = m(x3 + 1) + α11 + x3

m = (y2 + y1)/(x2 + x1) = (α11 + α7)/(1 + α13) = (α8)/(α6) = α2

x3 = α4

y3 = α8 3P = (α4, α8)
Number of calculations involved are (XORs, Squarings ignored):

m⇒ One division
x⇒ Nil

y⇒ One multiplication

Remark The IEEE P1363 provides recommendations for the crypto-
graphic use of ECs.
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