
ERROR-CORRECTING CODES   -   WEEK  2

Hamming Codes and Perfect Codes

The standard array of an (n,k) binary code has its first row formed by 2^k codewords. The next nC1 (=n) 
rows are cosets with coset leaders the n single-bit errors. Cosets are formed by choosing as coset leader 
an n-vector not already written down, so we may continue adding nC2 rows with all 2-bit errors as coset 
leaders. There will be no clash if the distance of the code is 5 or more, because no n-vector in the array 
could simultaneously be at distance 2 from two distinct codewords. We may continue thus with 3-bit 
errors as coset leaders (nC3 of them) provided we do not exceed the maximum total of 2^(n-k) rows. 
Thus a (15,7) code with 2^7 codewords can have at most 2^8 = 256 rows. Now 1 + nC1 + nC2 = 121 
with n=15 so a distance-2 (15,7) code appears possible, but a distance-3 (15,7) code is not; because 1 + 
nC1 + nC2 + nC3 = 455 > 256.

Question: is a distance-3 (15,5) code possible?

When Sum([nCj] for j=1,t) = 2^(n-k) then we could have a perfect distance-t code. The standard array 
based on coset leaders of up to t bit-errors fits exactly into the space available. Hamming Codes are 
perfect codes. They have t=1 and 2^(n-k) = 1+n. Possibilities are:

(n-k) = 2   3   4    5   6  . . . . . 
    n   = 3   7  15  31 63       giving (3,1), (7,4), (15,11), (31,26), (63,57) Hamming Codes.

Question:  The (23,12) Golay Code is a Perfect Code. How many error bits should it be capable of  
correcting?

The Varsharmov-Gilbert Bound

The VG Bound is a lower bound on a graph relating code rate to distance. Below the VG  bound, codes 
with paired (code rate – distance) values can always be found. This is in contrast to the sphere-packing 
bound which is an upper bound – no pairs exist above it. See Annexe 2.1. The VG bound is found by 
considering a given (n-k) (the number of rows in H) and adding linearly independent columns (whose 
number controls the distance), thereby increasing n and the code rate (k/n = 1 – (n-k)/n)) for some 
starting value of d, until it is no longer possible. Adding a new column to H can never increase the 
distance – 

Question: Why?

 Suppose we already have (n-1) columns subject to the constraint that any j columns (j<=2t) are linearly 
independent. Choose and add a new column that is not equal to any linear combination of (2t-1) existing 
columns. Now no 2t columns are linearly dependent. The choice is always possible if all linear 
combinations of existing ones is such that:
Sum [(n-1)Cj,j=1,(2t-1)] < 2^(n-k) – 1, the number of possible non-zero columns. For large n this gives:
2^((n-1)H(m)) < 2^(n-k)     with m= (2t-1)/(n-1).
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So for large n we can create a code of distance (2t+1) provided n.H(2t/n) < (n-k) 
or k/n < 1- H(2t/n). This is the VG Bound .
 
The Plotkin Bound

The Plotkin Bound is an upper bound for the existence of linear codes.

In any given bit position half the codewords have 0, half have 1. Exercise: Students to show this by 
considering cosets. Students to show similar result for non-binary codes.

1) Given a length n and distance d=2t+1 consider that code which has maximum number of codewords 
M(n,t) with those parameters. The set of all codewords ending in 0 is a subspace holding half the 
codewords. Therefore M(n-1,t)>=M(n,t)/2, or M(n,t) <= 2.M(n-1,t)

2) The total weight of the code is n.2^(k-1). The distance d, the minimum weight, is less than the 
average weight of non-zero codewords, so d < =[n.2^(k-1)]/[2^k – 1] . This simplifies (for the 
optimal code) to M(n,t) = 2^k <= 2d/(2d-n), provided that 2d-n is positive..

3) For a given d consider that n* = 2d-1, so M(n*,t) <= 2d. For larger n we get 2^k=M(n,t)<=2d.2^(n-n*
)=d.2^(n+2-2d).   So k<=n+2-2d + logd. Approximating then gives the Plotkin Bound for code rate 
k/n <= 1 – 4t/n. See Annexe 2A. 

Modulation

Data are seldom transmitted as rectangular bits. The bits are encoded as continuous waveforms suitable 
to the medium (wire, fibre, radio etc.) usually employing a carrier signal. Even the old-fashioned copper 
telephone pair was used to send data encoded as frequencies – 980Hz representing 1 and 1180Hz 
representing 0. This is known as FSK or Frequency Shift Keying, and signalling rates up to 300 bps 
could be achieved. The modulator/demodulator is called a modem. The V26 modem encoded two bits, 
worked at 1200 symbols/per/second (baud) giving 2400 bits per second. Differential Phase Shift 
Keying (D-4PSK) was used, with an 1800Hz carrier and changes in data encoded by phase shifts: 
00(+0degrees), 01(+90),11(+180),10(+270). (See Annexe 2B.) Note the use of Gray Coding in which the 
adjacent symbols on the phase diagram differ by only a single bit – Why?

Exercise: Gray code the symbols for 8PSK.

Much more sophisticated modems, encoding up to five bits per symbol, are now common. They employ 
both phase and amplitude modulation – and use TCM (Trellis Code Modulation).

The demodulator may misread a received symbol and so deliver the wrong bit-pattern. Misreading is 
typically due to noise on the channel. Noise is usually modelled as AWGN – Additive White Gaussian 
Noise. It affects the entire frequency range uniformally, has zero mean, a Normal distribution with a 
standard deviation expressing the strength of the noise, and is deemed to be added to the users’ signal. 
One can calculate the resultant bit-error probability (p) at the demodulator for each modulation technique 
as a function of the Signal-Noise Ratio, SNR (S/N =A, say). 

Typically p is proportional to erfc(rA^1/2) or to e^(-rA), for some constant r, where erfc(x) is the integral 
from x to infinity of e(-t^2).dt – that is, the tail ends of decaying exponential functions giving an ever 
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smaller p as SNR, A, increases. Note that p is the symbol error probability, but if Gray coding is used this 
may be taken to be the bit error probability. Annexe 2C shows the dependence of p on SNR for some 
common modulation techniques.

[Capacity, C, previously defined in terms of discrete binary transmission of information can also be 
analysed in terms of continuous transmission using waveforms of appropriate frequencies. Shannon’s 
Theorem shows that C = W log[ 1 + S/N ] bits per second   where W is the bandwidth of the channel.]

Erasures

Demodulation turns noisy waveforms into bits and in so doing interprets the received waveforms. Hard 
decision demodulation decides which waveforms were sent and outputs their digital values unqualified, 
and possibly erroneous. Instead of labelling each bit 1 or 0 a third possibility is to label it ?, signifying 
‘dubious’ – an ‘erasure’. Ordinary errors are unknown as to location and value; erasures’ locations are 
known – for example scratches or dirt on a recording medium. If the distance of a binary code is 2t+1 
and there are s errors and k erasures correct decoding is possible provided that  2s + k <=2t. Suppose in 
reality that the erasures correspond to r 1s and (k-r) 0s. Set all the erasures to 0, giving s+r errors. Then 
set all the erasures to 1 giving s+k-r errors. Both of these expressions cannot simultaneously be greater 
than t, so one or the other will lead to successful decoding. 

Exercise: Explain why, and describe how used in practice.
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