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1. Simplicial homology

1.1. Motivation. Algebraic topology relates problems of topology and algebra. At the first
level which is the content of this course one reduces topological problems to algebra and in
particular to linear algebra. At the next level one reduces algebraic problems to topology.

The main approach is the following. Given a topological space X, one constructs an algebraic
object H(X). This can be a group (like a fundamental group), a vector space, an algebra, etc.
This construction is usually functorial, meaning that given a continuous map f : X → Y , there
is a homomorphism f∗ : H(X)→ H(Y ). In this way we obtain a functor (see Appendix B) from
the category of topological spaces to the category of groups, vector spaces, algebras, etc. The
objective is to relate topological properties of X to algebraic properties of H(X). We will study
just one construction of this type, called the homology theory.

As applications of the theory that we will develop, we will later prove the following statements:
(1) Rn are not homeomorphic to each other for different n 3.35.
(2) A continuous map f : Dn → Dn has a fixed point (Brouwer theorem) 3.37.
(3) One can not comb a hedgehog smoothly, meaning that there is no continuous non-

vanishing tangent vector field on S2 4.4.
(4) If f : S1 → R2 is injective and continuous, then R2\f(S1) consists of exactly two

connected components (Jordan curve theorem) 4.7.
(5) One can not embed Sn in Rn 4.10. Generally, if f : M → N is an embedding of

topological n-manifolds, with compact M and connected N , then f is a homeomorphism
4.13.

(6) The field C is algebraically closed (Fundamental theorem of algebra) 4.17.
(7) If f : Sn → Rn is continuous, then there exists x ∈ Sn with f(x) = f(−x) (Borsuk-Ulam

theorem) 4.18.
(8) If F1, F2, F3 is a closed covering of S2, then at least one Fi contains antipodal points

(x,−x ∈ Fi). Generally, if F1, . . . , Fn+1 is a closed covering of Sn, then at least one Fi

contains antipodal points (Borsuk-Ulam theorem) 4.18.

Example 1.1. Let us consider a finite connected graph on a plane. It consists of several points
(called vertices) connected by line segments (called edges), without intersections. Connected
components of the complement are called faces (we consider also the unbounded component).
We assume that all bounded faces are homeomorphic to an open disc. Let v, e, f be the numbers
of vertices, edges and faces respectively. Then Euler’s formula states that

v − e+ f = 2.

For example, consider a graph consisting of one point. Then v = 1, e = 0, f = 1 and the formula
is satisfied. For a triangle on a plane, we have v = e = 3, f = 2 and the formula is again
satisfied.

The above decomposition of R2 can be interpreted as a decomposition (also called a triangula-
tion if all faces are triangles) of the two-dimensional sphere S2 – the sphere is obtained from R2

by adding one point at infinity and we consider the unbounded component as containing this
additional point. The left hand side of Euler’s formula can be associated with any triangulation
of S2. According to the formula, this number is independent of the triangulation, hence it is
an invariant of S2, called the Euler characteristic of S2. Homology theory in a nutshell is a
generalization of Euler’s formula to other topological spaces.
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1.2. Triangulated spaces. By a space we will always mean a topological space. By a map
between spaces we will always mean a continuous map, unless otherwise stated. We will study
spaces that can be obtained by gluing together points, segments, triangles and higher-dimensional
building blocks, called simplices. The structure that one obtains is called a triangulated space.
Its combinatorial counterpart is called a ∆-set or a semi-simplicial set. Having this combinatorial
structure, one can apply linearization to it and get an algebraic structure (an abelian group or
a vector space), called the homology of the original space.

Definition 1.2. The standard n-simplex (simplex of dimension n) is

∆n =
{
(t0, . . . , tn) ∈ Rn+1

∣∣∣ ti ≥ 0,
∑

i
ti = 1

}
.

Remark 1.3. For a subset X ⊂ Rd, define the convex hull

conv(X) =
{∑

i
tixi

∣∣∣xi ∈ X, ti ≥ 0,
∑

i
ti = 1

}
.

Then ∆n = conv{e0, . . . , en}, where e0, . . . , en is the standard basis of Rn+1.

Example 1.4. ∆0 = {1} ⊂ R is a point, ∆1 is a line segment (edge, interval), ∆2 is a triangle,
∆3 is a tetrahedron.

e0

e1 ∆1 e2

e0

e1

∆2

Remark 1.5. Let us define an n-dimensional disc

Dn = {x ∈ Rn | ∥x∥ ≤ 1},

an n-dimensional sphere
Sn =

{
x ∈ Rn+1

∣∣ ∥x∥ = 1
}
,

and an n-dimensional cube
In = I × . . .× I︸ ︷︷ ︸

n times

, I = [0, 1].

Then
∆n ≃ Dn ≃ In

and ∂∆n ≃ ∂In ≃ ∂Dn = Sn−1. We can obtain Sn by gluing two hemispheres Dn
± (both

homeomorphic to Dn) along their boundary Sn−1.

Definition 1.6. For n ≥ 0, let [n] = {0, . . . , n}, considered as an ordered set.
(1) The simplex ∆n has vertices ei ∈ Rn+1 for i ∈ [n] (where ei = (t0, . . . , tn) satisfies ti = 1).

Every t ∈ ∆n can be uniquely written as t =
∑n

i=0 tiei, where ti ≥ 0 and
∑

i ti = 1.
(2) For every nonempty subset I ⊂ [n], define the face of ∆n

∆I = conv{ei | i ∈ I } = {t ∈ ∆n | ti = 0 for i /∈ I }.

It is a simplex of dimension m = #I − 1. The subset I ⊂ [n] can be identified with the
(strictly) increasing map f : [m]→ [n] such that f([m]) = I.

(3) For f : [m]→ [n], consider the continuous map

f∗ : ∆
m → ∆n,

∑
i
siei 7→

∑
i
sief(i).

Equivalently, (s0, . . . , sm) 7→ (t0, . . . , tn), where tj =
∑

f(i)=j si. If f : [m] → [n] is
increasing, then f∗ is injective and f∗(∆

m) = ∆I for I = f([m]) ⊂ [n].
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(4) A facet of ∆n is a face of dimension n− 1. There are n+ 1 facets in ∆n, corresponding
to (strictly) increasing maps δi : [n− 1]→ [n] that miss i ∈ [n], called coface maps.

(5) The boundary ∂∆n of ∆n is the union of all facets (or all faces of dimension < n). It
consists of t ∈ ∆n with at least one ti = 0.

(6) The open simplex
◦
∆n is the interior of ∆n

◦
∆n = {t ∈ ∆n | ti > 0 ∀i} = ∆n\∂∆n.

Note that ∂∆0 = ∅ and
◦
∆0 = ∆0.

Example 1.7. Consider the faces of ∆2 and observe how they correspond to subsets of [2] or to
(strictly) increasing maps f : [m]→ [2]. For f : [0]→ [2], consider the map f∗ : ∆

0 = {1} → ∆2

and the corresponding vertex of ∆2.

Definition 1.8. A triangulation K of a space X is a collection of maps (called simplices)

(ϕσ = σ : ∆n → X)σ∈K ,

where n depends on σ and is called its dimension, such that
(1) The restriction σ| ◦

∆n
is injective and X is the disjoint union of cells eσ = σ(

◦
∆n).

(2) The restriction of σ to a face of ∆n is again a simplex τ : ∆m → X from K.
(3) A subset A ⊂ X is open ⇐⇒ σ−1(A) is open in ∆n for each σ ∈ K.

The pair (X,K), consisting of a space X and a triangulation K, is called a triangulated space
(or a ∆-complex).

Remark 1.9. A map σ : ∆n → X from a triangulation is not necessarily injective even though
its restriction to the open simplex

◦
∆n is injective. Nevertheless, we will often identify σ with its

image σ(∆n) ⊂ X (especially on the drawings of triangulations).

Example 1.10. We have the following triangulations of the circle S1.

(1) S1 ≃ ∂∆2 inherits its triangulation with 3 vertices and 3 edges:

v1

v2

v0

a

b

c

(2) S1 can be obtained by gluing 1 vertex and 1 edge: v0a

We have K = {v0, a}, where v0 is a 0-simplex and a is a 1-simplex. We represent S1

as S1 = {z ∈ C | |z| = 1} and consider the maps

ϕv0 : ∆
0 = {1} → S1, 1 7→ 1, ϕa : ∆

1 ≃ [0, 1]→ S1, t 7→ e2πit.

(3) S1 can be obtained by gluing 2 vertices and 2 edges: v0v1

a

b

Example 1.11. We have the following triangulations of the sphere S2.
(1) S2 is homeomorphic to ∂∆3 (the boundary of a tetrahedron). The corresponding

triangulation has 4 0-simplices, 6 1-simplices and 4 2-simplices. Note that 4− 6 + 4 = 2

in accordance with Euler’s formula.
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(2) S2 can be obtained by gluing two hemispheres or two triangles along the boundary. The
corresponding triangulation has 3 vertices, 3 1-simplices and 2 2-simplices. Note that
3− 3 + 2 = 2 in accordance with Euler’s formula.

Let Kn be the set of all n-dimensional simplices of a triangulation. For a (strictly) increasing
map f : [m] → [n] and a simplex σ ∈ Kn, the composition ∆m f∗−→ ∆n σ−→ X is equal to
τ : ∆m → X for a unique simplex τ ∈ Km which we denote by f ∗(σ) ∈ Km:

∆m ∆n X
f∗

τ

σ

In this way we obtain a map f ∗ : Kn → Km, f ∗(σ) = σf∗, for every increasing map f : [m]→ [n].
Given two increasing maps [ℓ]

g−→ [m]
f−→ [n], we consider f ∗ : Kn → Km, g∗ : Km → Kl and

(fg)∗ : Kn → Kl. We have

(fg)∗(σ) = σ(fg)∗ = (σf∗)g∗ = g∗(f ∗σ),

where we used the fact that (fg)∗ = f∗g∗. We conclude that (fg)∗ = g∗f ∗. This leads us to the
definition of a ∆-set.

Definition 1.12. A ∆-set (or a semi-simplicial set) K is a collection of sets (Kn)n≥0 together
with maps f ∗ : Kn → Km, for every (strictly) increasing map f : [m]→ [n], such that

1
∗ = 1, (fg)∗ = g∗f ∗, [ℓ]

g−→ [m]
f−→ [n].

Elements of Kn are called n-dimensional simplices of K. Elements of V = K0 are called vertices
of K. We denote

⊔
n≥0Kn by K.

Example 1.13. The faces of ∆n are parametrized by non-empty subsets I ⊂ [n] or by increasing
maps σ : [m]→ [n], for 0 ≤ m ≤ n. They form a triangulation of ∆n. The corresponding ∆-set
is denoted by ∆[n]. The set ∆[n]m of m-simplices consists of increasing maps σ : [m]→ [n]. If
f : [k]→ [m] is an increasing map, then f ∗ is given by

f ∗ : ∆[n]m → ∆[n]k, ∆[n]m ∋ σ 7→ σ ◦ f ∈ ∆[n]k.

Example 1.14. Given a ∆-set K, let ∂K be the ∆-set obtained from K by removing all
maximal simplices (simplices σ ∈ Km that are not of the form f ∗(τ) for some increasing
f : [m] → [n], m < n). For example, ∂∆[n] is obtained from ∆[n] by removing the unique
n-simplex id : [n] → [n]. The simplices of ∂∆[n] correspond to all proper non-empty subsets
I ⊂ [n]. Note that ∂∆[n] is a triangulation of the boundary ∂∆n ≃ Sn−1.

Remark 1.15. Let K be a ∆-set. For every 0 ≤ i ≤ n, we consider the maps

ui : [0]→ [n], 0 7→ i, vi = u∗
i : Kn → K0 = V.

We call vi(σ) the i-th vertex of σ ∈ Kn. In particular, for an edge a ∈ K1, we consider its
vertices x0 = v0(a), x1 = v1(a) and interpret a as an arrow x0 a x1

If the map
v : Kn → V n+1, σ 7→ (v0(σ), . . . , vn(σ)),

is injective, then every n-simplex is uniquely determined by the sequence of its vertices. In this
case we will denote a simplex σ ∈ Kn by [x0, . . . , xn] or just x0 . . . xn, where xi = vi(σ).

Example 1.16.
(1) Triangulation of an interval. We have K0 = {v0, v1} and K1 = {a = [v0, v1]}.

v0 a v1
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(2) Triangulations of S1:
(1) K0 = {v0}, K1 = {a = [v0, v0]} (one vertex and one loop).
(2) K0 = {v0, v1}, K1 = {a = [v0, v1], b = [v1, v0]}.
(3) K = ∂∆[2] with K0 = {0, 1, 2} and K1 = {[0, 1], [1, 2], [0, 2]}.

(3) Consider the canonical triangulation K of the standard simplex ∆2:

0 1

2

a

bc

Every face of ∆2 is a simplex of the triangulation. Therefore we have

K0 : 0, 1, 2, K1 : a = [0, 1], b = [1, 2], c = [0, 2], K2 : σ = [0, 1, 2].

Note that the simplices of K correspond to all nonempty subsets of [2] = {0, 1, 2}.
(4) Since, Sn−1 ≃ ∂∆n, it has a triangulation parametrized by the ∆-set ∂∆[n].

Example 1.17. Triangulations of S2, Torus, Klein bottle, Möbius strip.

0 1

21
b

a

a bc
τ

σ

S2

0 0

00
b

b

a ac
τ

σ

T

0 0

00
b

b

a ac
τ

σ

K

0 1

01
b

d

a ac
τ

σ

M

Example 1.18. Consider the real projective plane RP2 = (R3 − {0})/R× ≃ S2/{±1} (see
Example A.4). We can construct RP2 by taking the upper hemisphere of S2 (homeomorphic to
the disk D2) and identifying the opposite (antipodal) points (x ∼ −x) on its boundary. This
leads us to the following description (and triangulation) of RP2

vw

v w

b

b

a ac
τ

σ

Example 1.19. This example generalizes the ∆-set ∆[n]. For a poset P (see Definition
A.1), let ∆(P ) be the set of all non-empty finite chains (totally ordered subsets) I ⊂ P or,
equivalently, of (strictly) increasing maps σ : [m] → P (where I = σ([m])). This is a ∆-set,
called the order complex or the nerve of P (cf. Example 1.36). The set ∆(P )m of m-simplices
consists of increasing maps [m] → P . The set of vertices is ∆(P )0 = P . In particular, for
P = [n] = {0 < · · · < n}, we obtain ∆(P ) = ∆[n], the ∆-set parameterizing all non-empty
subsets of [n] (or faces of ∆n, see Example 1.13).

Example 1.20. The triangulation of a square

31

0 2

τ

σ
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corresponds to the ∆-set ∆(P ) for the poset

P = {0, 1, 2, 3 | 0 < 1 < 3, 0 < 2 < 3}.

The 2-simplices of ∆(P ) are σ = {0 < 1 < 3} and τ = {0 < 2 < 3}.

Remark 1.21. For every 0 ≤ i ≤ n, we defined the coface map δi : [n − 1] → [n] to be an
increasing map that misses i ∈ [n] in the image:

δi(k) =

{
k k < i,

k + 1 k ≥ i.

The corresponding map ∂i = δ∗i : Kn → Kn−1 is called the face map (or the face operator).
Every increasing map f : [m]→ [n] can be written as a composition δi1 . . . δik (such expression
is unique if we require i1 ≤ · · · ≤ ik). Therefore the map f ∗ : Kn → Km can be written as a
composition of face maps ∂i. The maps ∂i can not be arbitrary as they should satisfy Eq. (2)
from the following lemma. This equation is necessary and sufficient for the existence of a ∆-set
structure.

Lemma 1.22. We have
δjδi = δiδj−1, i < j. (1)

Therefore
∂i∂j = ∂j−1∂i, i < j. (2)

Proof. To prove that first equality, we note that both compositions are increasing and miss i, j.
For example, δiδj−1(j − 2) = δi(j − 2) < j and δiδj−1(j − 1) = δi(j) = j + 1, hence j is not in
the image. Therefore the compositions are equal. The second equality follows from the first:

∂i∂j = δ∗i δ
∗
j = (δjδi)

∗ = (δiδj−1)
∗ = δ∗j−1δ

∗
i = ∂j−1∂i.

□

Remark 1.23.* Let ∆+ be the category with objects [n] for n ≥ 0 and (strictly) increasing maps
between them. A ∆-set K can be interpreted as a functor K : ∆op

+ → Set, where [n] 7→ Kn

and f : [m]→ [n] is mapped to f ∗ : Kn → Km. Let P+ be the category of posets with (strictly)
increasing maps between them. Then ∆+ ⊂ P+ is a subcategory and every poset P induces a
functor P+(−, P ) : ∆op

+ → Set, which is exactly the ∆-set ∆(P ) described earlier.
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1.3. Geometric realization. So far we have seen that a triangulation of a space produces a
∆-set structure. But we can also start with a ∆-set K and canonically construct a triangulated
space |K|, called a geometric realization of K. This geometric realization is obtained by gluing
simplices ∆σ ≃ ∆n for σ ∈ Kn. Consider the space

K̄ =
⊔
n≥0

Kn ×∆n =
⊔
σ∈K

∆σ, ∆σ = {σ} ×∆n, σ ∈ Kn,

with the equivalence relation generated by (see Definition A.5)

Km ×∆m ∋ (σ, s) ∼ (τ, t) ∈ Kn ×∆n ⇐⇒ σ = f ∗(τ), t = f∗(s), (3)

for some increasing f : [m]→ [n]. We will write (σ, s)
f−→ (τ, t) for the above situation and call

it a simple equivalence. This relation means that if σ ∈ Km is a face of τ ∈ Kn, then the points
of ∆σ should be identified with the points of ∆τ . Define the geometric realization

|K| = K̄/∼

and equip it with the quotient topology (see Section A.2) with respect to the projection map
π : K̄ → |K|. This means that U ⊂ |K| is open ⇐⇒ π−1(U) is open.

Remark 1.24. For every σ ∈ Kn, we have a map πσ : ∆
n ≃ ∆σ ↪→ K̄ → |K| (which is not

necessarily injective) and its restriction ◦
πσ :

◦
∆n ≃

◦
∆σ → |K| which is injective as we will see.

Theorem 1.25. The following map is a bijection
◦
π : K̄◦ =

⊔
n≥0

(Kn ×
◦
∆n)→ |K| .

Proof. For any point (τ, t) ∈ Kn ×∆n, let m ≤ n be the minimal dimension of a face of ∆n

containing t. Then there exists an increasing map f : [m]→ [n] such that t = f∗(s) for some
s ∈ ∆m. By the assumption on m, the point s ∈ ∆m is not contained in any facet, hence s ∈

◦
∆m.

Taking σ = f ∗(τ) ∈ Km, we obtain (τ, t) ∼ (σ, s) ∈ Km ×
◦
∆m, hence ◦

π is surjective.
Let us show that ◦

π is injective. Consider two points (σ, s), (τ, t) in K̄◦ and assume that they
are equivalent. Then there is a chain of simple equivalences

(σ, s) = (σ0, s0)
f=f0−−−→ (σ1, s1)

g=f1←−−− (σ2, s2)
f2−→ . . .← (τ, t),

with σi ∈ Kmi
. We will show that one can make this chain shorter. We have increasing maps

f : [m0]→ [m1], g : [m2]→ [m1] with s1 = f∗(s0) = g∗(s2). As s = s0 ∈
◦
∆m0 , we have

f∗(s0) ∈ g∗(∆
m2) ⇐⇒ f∗(∆

m0) ⊂ g∗(∆
m2).

We conclude from f∗(s0) = g∗(s2) that f∗(∆
m0) ⊂ g∗(∆

m2), hence Im f ⊂ Im g, hence there
exists an increasing map h : [m0]→ [m2] with f = gh. Then g∗(s2) = f∗(s0) = g∗h∗(s0), hence
s2 = h∗(s0) and we obtain (σ0, s0)

h−→ (σ2, s2). Taking its composition with f2 we get a chain

(σ, s)
f2g−−→ (σ3, s3)← . . .← (τ, t).

Finally we will get an equivalence (σ, s)
f−→ (τ, t) with t = f∗(s). As t is internal, we conclude

that f is a bijection, hence (σ, s) = (τ, t). This proves injectivity. □

Corollary 1.26. If K is a ∆-set, then |K| is canonically triangulated.

Proof. For every σ ∈ Kn, there is a canonical map πσ : {σ} ×∆n → K̄
π−→ |K|. By the previous

theorem these maps satisfy the first axiom of a triangulation. Other axioms follow from the
construction of |K|. □
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Remark 1.27. A map f : K → L between ∆-sets is called a simplicial morphism if f(Kn) ⊂ Ln

and if for every increasing ϕ : [m] → [n] we have ϕ∗f(σ) = fϕ∗(σ), for all σ ∈ Kn. Such
map induces a continuous map between geometric realizations |f | : |K| → |L| which sends
{σ} ×∆n ⊂ |K| to {f(σ)} ×∆n ⊂ |L|, for all σ ∈ Kn.

Theorem 1.28. Let X be a space with a triangulation K. Then the map

ϕ : |K| → X, Kn ×∆n ∋ (σ, t) 7→ σ(t) ∈ X,

is a homeomorphism.

Proof. Let us show first that ϕ respects equivalence classes, that is, well-defined.

∆m ∆n K̄ |K|

X

f∗

σ

iτ

τ

π

ϕ

Consider a simple equivalence (σ, s)
f−→ (τ, t) with f : [m] → [n] (3). Then σ = f ∗(τ) = τf∗.

This implies that σ(s) = τf∗(s) = τ(t), hence the images of equivalent elements coincide.
We proved that the map ◦

π : K̄◦ → |K| is bijective. On the other hand the composition

K̄◦
◦
π−→ |K| ϕ−→ X

is bijective by the first axiom of a triangulation, hence ϕ : |K| → X is also bijective.
The map K̄ → X, (σ, t) 7→ σ(t) is continuous, hence ϕ : |K| → X is also continuous, by the

definition of the quotient topology. On the other hand, if U ⊂ |K| is open, then A = ϕ(U) ⊂ X

satisfies
σ−1(A) = π−1(U) ∩ ({σ} ×∆n) ∀σ ∈ Kn.

This set is open as π is continuous. By the third axiom of a triangulation, this implies that A is
open, hence ϕ is a homeomorphism. □
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1.4. Simplicial complexes.

1.4.1. Geometric and abstract simplicial complexes.

Definition 1.29.
(1) For a subset X ⊂ Rd, define the convex hull

conv(X) =
{∑

i
tixi

∣∣∣xi ∈ X, ti ≥ 0,
∑

i
ti = 1

}
.

(2) The points x0, . . . , xn ∈ Rd are called affinely independent if any of the following
equivalent conditions is satisfied
(1) If

∑n
i=0 tixi = 0 and

∑n
i=0 ti = 0, then t0 = · · · = tn = 0.

(2) The map {t ∈ Rn+1 |
∑

i ti = 1} → Rd, t 7→
∑n

i=0 tixi, is injective.
(3) The vectors x1 − x0, . . . , xn − x0 are linearly independent.

(3) Define the standard n-simplex

∆n = conv{e0, . . . , en} =
{
t ∈ Rn+1

∣∣∣ ti ≥ 0,
∑

i
ti = 1

}
⊂ Rn+1,

where e0, . . . , en is the standard basis of Rn+1.
(4) For affinely independent points x0, . . . , xn ∈ Rd, the convex hull

conv{x0, . . . , xn} =
{∑n

i=0
tixi

∣∣∣ t ∈ ∆n
}

is called an n-simplex (or n-dimensional simplex), denoted by ∆(σ) = [x0, . . . , xn] and
identified with the set σ = {x0, . . . , xn}. The points xi are called the vertices of ∆(σ).

(5) For distinct x, y ∈ Rd, define the interval [x, y] = conv{x, y} = {tx+ (1− t)y | t ∈ [0, 1]}.
(6) A face of a simplex ∆ = [x0, . . . , xn] is a simplex [xi0 , . . . , xim ] (of dimension m ≥ 0) for

0 ≤ i0 < · · · < im ≤ n. A face of dimension n− 1 is called a facet of ∆. The union ∂∆

of all facets (or all faces of dimension < n) is called the boundary of ∆. The complement
◦
∆ = ∆\∂∆ is called an open simplex .

Many topological spaces (for example S1 and S2) can be triangulated, that is, decomposed
into unions of points, intervals, triangles, and higher dimensional simplices. In the next definition
we will formalize this point of view.

Definition 1.30. A geometric simplicial complex K is a collection of simplices (∆(σ))σ∈K in Rd

such that
(1) If σ ∈ K, then every face of σ is in K.
(2) The intersection of two simplices in K is a face of both of them.

The underlying space |K|u =
⋃

σ∈K ∆(σ) ⊂ Rd is equipped with the induced topology. The
axioms of a simplicial complex imply that |K|u =

⊔
σ∈K

◦
∆(σ), a disjoint union of open simplices.

Let Kn be the set of n-simplices of K for n ≥ 0. The set V ⊂ Rd such that K0 = {{v} | v ∈ V }
is called the set of vertices of K. Every n-simplex of K can be identified with the set of its
vertices. The first axiom implies that if σ ∈ K and ∅ ̸= τ ⊂ σ (as a subset of V ), then τ ∈ K.
This leads us to the definition of an abstract simplicial complex.

Definition 1.31. An (abstract) simplicial complex (V,K) consists of a vertex set V and a
collection K of non-empty finite subsets of V (called simplices) such that

(1) {v} ∈ K for every v ∈ V .
(2) If σ ∈ K and ∅ ̸= τ ⊂ σ, then τ ∈ K. The set τ is called a face of σ.

The dimension of a simplex σ ∈ K is defined to be n if σ has n+ 1 elements. Let Kn be the set
of all n-dimensional simplices of K. We identify K0 and V . Let dimK = sup{n ≥ 0 |Kn ̸= ∅}.
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The above discussion implies that a geometric simplicial complex can be interpreted as an
abstract simplicial complex. We will see soon, that for an abstract simplicial complex K we can
construct the corresponding geometric simplicial complex, called the geometric realization of K.

Example 1.32. A simplicial complex K of dimension ≤ 1 is called a graph. It consists of the
set of vertices K0 = V and the set of edges K1, where every edge e = {u, v} ⊂ V has exactly
two elements, called the vertices of e.

Example 1.33. Let ∆[n] be the set of all non-empty subsets of [n] = {0, . . . , n}. It is a
simplicial complex with the set of vertices [n]. It parametrizes the faces of ∆n.

Remark 1.34. Define the power set 2V to be the set of all subsets of V (every A ⊂ V induces
χA : V → {0, 1}, where χA(v) = 1 if v ∈ A and zero otherwise). If (V,K) is a simplicial
complex, then K ⊂ 2V is partially ordered by inclusion of sets in V . A poset K corresponds to
a simplicial complex ⇐⇒ for all σ ∈ K, the poset K≤σ = {τ ∈ K | τ ≤ σ} is isomorphic to
∆[n] (non-empty subsets of [n]) for some n ≥ 0. The set of vertices is defined by V = minK.

Example 1.35. For a simplicial complex K, let maxK be the set of its maximal simplices.
Then ∂K = K\maxK is a simplicial complex called the boundary of K. For example, ∂∆[n]

consists of all non-empty proper subsets ∅ ̸= σ ⊊ [n]. It parametrizes the faces of ∂∆n.

Example 1.36 (Order complex). For a poset P , let ∆(P ) be the set of all non-empty finite
chains (totally ordered subsets) of P (cf. Example 1.19). Then ∆(P ) is a simplicial complex with
set of vertices P , called the order complex of P . In particular, for the poset [n] = {0 < · · · < n},
the order complex ∆([n]) coincides with ∆[n].

1.4.2. Geometric realization.

Definition 1.37. For an (abstract) simplicial complex (V,K), the geometric realization or the
simplicial polyhedron of K is

|K|p =
{
t ∈ [0, 1]V

∣∣∣∣∑v∈V
tv = 1, supp(t) ∈ K

}
⊂ [0, 1]V ,

where supp(t) = {v ∈ V | tv ̸= 0}. The numbers tv are called the barycentric coordinates of
t ∈ |K|p. The set |K|p ⊂ RV is equipped with the subspace topology.

Example 1.38. Let K = ∆[n] be the set of all non-empty subsets of [n]. Then

|K|p =
{
t ∈ [0, 1]n+1

∣∣∣ ∑
i
ti = 1

}
= ∆n.

Example 1.39. Let K = ∂∆[n] be the set of all non-empty proper subsets of [n]. Then

|K|p =
{
t ∈ [0, 1]n+1

∣∣∣ ∑
i
ti = 1, ∃i with ti = 0

}
= ∂∆n ≃ Sn−1.

Theorem 1.40. Let K be a finite geometric simplicial complex in Rd and V ⊂ Rd be its vertex
set. Then the map

ϕ : |K|p → |K|u , t 7→
∑

v∈V
tvv

is a homeomorphism.

Proof. For σ = {v0, . . . , vn} ∈ Kn, let

∆(σ) =
{
t ∈ |K|p

∣∣∣ supp(t) ⊂ σ
}
≃ ∆n,

◦
∆(σ) =

{
t ∈ |K|p

∣∣∣ supp(t) = σ
}
≃

◦
∆n.

The map ϕ maps ∆(σ) ⊂ |K|p bijectively to ∆(σ) ⊂ |K|u. Moreover, we have |K|p =
⊔

σ

◦
∆(σ)

and |K|u =
⊔

σ

◦
∆(σ), hence ϕ is a bijection. It is clear that ϕ is continuous. The fact that |K|p

is compact and |K|u is Hausdorff, implies that ϕ is a homeomorphism. □
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1.4.3. Simplicial complexes and ∆-sets.

Remark 1.41. Note that a simplicial complex of dimension 1 is a graph and a ∆-set of
dimension 1 is a directed graph (with a ∈ K1 oriented from v0(a) to v1(a)). We can equip every
graph with an orientation. Conversely, for every oriented graph without loops, we obtain a
non-oriented graph by forgetting the orientation. Similarly, we will relate simplicial complexes
and ∆-sets by introducing or forgetting the “orientation” of simplices.

We say that a simplicial complex (V,K) is ordered if V is equipped with a partial order
such that every simplex σ ∈ K is a chain (totally ordered). In this case we denote a simplex
{v0 < · · · < vn} of K by [v0, . . . , vn].

Lemma 1.42. An ordered simplicial complex has a canonical structure of a ∆-set.

Proof. Every σ ∈ Kn can be written in the form σ = {v0 < · · · < vn} ⊂ V . We can identify σ

with the increasing map σ : [n] → V , i 7→ vi. For any increasing map f : [m] → [n], the
composition [m]

f−→ [n]
σ−→ V is increasing and corresponds to a simplex in Km, hence we obtain

the map f ∗ : Kn → Km, σ 7→ σf . This means that K has a structure of a ∆-set. □

Note that in a simplicial complex every simplex is uniquely determined by its set of vertices.
This is not always the case for ∆-sets (for example, consider a triangulation of S1 consisting
of two vertices and two intervals between them). Let K be a ∆-set and V = K0 be its set
vertices. For every 0 ≤ i ≤ n, consider the map ui : [0]→ [n], 0 7→ i, and the corresponding map
vi = u∗

i : Kn → K0 = V (cf. Remark 1.15). We call vi(σ) the i-th vertex of σ ∈ Kn. Consider
the map

v : K → 2V , Kn ∋ σ 7→ {vi(σ) | 0 ≤ i ≤ n} ⊂ V.

If v : K → 2V is injective, we denote a simplex σ ∈ Kn by [v0(σ), . . . , vn(σ)].

Lemma 1.43. Let K be a ∆-set such that v : K → 2V is injective (every simplex is uniquely
determined by its set of vertices). Then K has a canonical structure of a simplicial complex.

Proof. As v : K → 2V is injective, we can interpret K as a subset of 2V . For every v ∈ V = K0,
the one-point set {v} is in K, hence the first axiom of a simplicial complex is satisfied.

We claim that, for every σ ∈ Kn, the subset v(σ) ⊂ V has exactly n+ 1 elements. Indeed, if
v(σ) has ≤ n elements, then vi(σ) = vj(σ) for some i ̸= j. But then τ = δ∗i (σ) ∈ Kn−1 and σ

have the same set of vertices, a contradiction. For σ = {v0, . . . , vn} ∈ Kn and τ ⊂ σ, there
exists an increasing map f : [m]→ [n] such that τ =

{
vf(0), . . . , vf(m)

}
. Then f ∗(σ) has the set

of vertices τ , hence τ ∈ Km and the second axiom of a simplicial complex is satisfied. □

Example 1.44. Consider a triangulation of S1 that corresponds to a simplicial complex. Such
triangulation should have at least 3 vertices and 3 edges. On the other hand, there exists a
triangulation of S1 with just one vertex and one edge. Therefore ∆-sets can be more economical
than simplicial complexes.

Remark 1.45. Consider the ∆-set K = {v0, v1, v2, [v0, v1], [v1, v2], [v2, v0]} and the corresponding
simplicial complex. For any order on this simplicial complex we don’t obtain the original ∆-set.
Indeed, any such order would require v0 < v1 < v2 < v0. On the other hand, the ∆-set
K = {v0, v1, v2, [v0, v1], [v1, v2], [v0, v2]}, has the same simplicial complex and corresponds to the
order v0 < v1 < v2.
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Theorem 1.46. Let K be a finite ∆-set such that v : K → 2V is injective (so that K is
also a simplicial complex). Then there is a homeomorphism ϕ : |K| → |K|p, where for σ =

[v0, . . . , vn] ∈ Kn we consider (ev ∈ RV are standard basis vectors)

∆σ = {σ} ×∆n ϕ−→ ∆(σ) =
{
t ∈ |K|p

∣∣∣ supp(t) ⊂ σ
}
,

(t0, . . . , tn) 7→
∑

i
tievi ∈ RV ,

Proof. The map ϕ̄ : K̄ =
⊔

n≥0Kn × ∆n → |K|p described above is continuous and respects
equivalence classes. Therefore it induces a continuous map ϕ : |K| → |K|p. For σ ∈ Kn, the

open simplex
◦
∆σ is mapped bijectively to

◦
∆(σ) =

{
t ∈ |K|p

∣∣∣ supp(t) = σ
}

. We proved earlier

that |K| ≃
⊔

σ∈K
◦
∆σ and it is clear that |K|p =

⊔
σ∈K

◦
∆(σ). Therefore ϕ is a bijection.

Since K is finite, the space |K| is compact. Since |K|p ⊂ [0, 1]V , it is Hausdorff. Therefore
the bijective continuous map ϕ : |K| → |K|p is a homeomorphism. □
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1.5. Product triangulation.

Theorem 1.47 (Triangulation of the product). The product ∆m × ∆n has a triangulation
parametrized by the order complex ∆(P ) (see Example 1.36), where P = [m]× [n] is equipped
with the partial order (i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′. Namely, there is a homeomorphism

|∆(P )| ∼−→ ∆m ×∆n,
∑

(i,j)∈P

tijeij 7→
∑

(i,j)∈P

tij(ei, ej) ∈ Rm+n+2,

where (eij)(i,j)∈P is the standard basis of RP .

Proof. We will consider only the case P = [n]× [1] and the corresponding map

f : |∆(P )| → ∆n × [0, 1].

We have P = {v0, . . . , vn, w0, . . . , wn}, where vi = (i, 0), wi = (i, 1) and vi ≤ vj, vi ≤ wj,
wi ≤ wj for i ≤ j. The maximal simplices of ∆(P ) have dimension n+ 1 and are of the form
σi = (v0, . . . , vi, wi, . . . , wn) for 0 ≤ i ≤ n. A point

(t0, . . . , ti−1, t
′
i, t

′′
i , ti+1, . . . , tn) ∈ ∆(σi) ≃ ∆n+1

is mapped to

(t0, . . . , ti−1, ti = t′i + t′′i , ti+1, . . . , tn; s) ∈ ∆n × [0, 1], s = t′′i + ti+1 + · · ·+ tn.

Let us introduce new coordinates on ∆n by sending t ∈ ∆n to

x = (x1, . . . , xn) ∈ Rn, xj = t0 + · · ·+ tj−1, 1 ≤ j ≤ n.

In these coordinates ∆n is given by 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. Note that 1− s = t0 + · · ·+ ti−1 + t′i,
hence the above point in ∆n × [0, 1] satisfies

0 ≤ x1 ≤ · · · ≤ xi ≤ 1− s ≤ xi+1 ≤ · · · ≤ xn.

For any point in ∆n× [0, 1], we can find an appropriate i such that this point is contained in the
image of ∆(σi). This implies that f is surjective. Injectivity follows from the same analysis. □

Example 1.48. For n = 1, consider the triangulation of the square ∆1 ×∆1.

v0 v1

w0 w1

The 1-simplex [v0, w1] divides the square into triangles [v0, w0, w1], [v0, v1, w1]. They correspond
to the maximal chains of P = [1]× [1] = {v0, v1, w0, w1}, where vi = (i, 0) and wi = (i, 1).

Example 1.49. For n = 2, consider the triangulation of the cylinder ∆2 ×∆1.

v0 v1

v2

w0 w1

w2

The 2-simplices [v0, w1, w2], [v0, v1, w2] divide the cylinder into three tetrahedrons, corresponding
to the maximal chains [v0, w0, w1, w2], [v0, v1, w1, w2], [v0, v1, v2, w2] of P = [2]× [1].

Remark 1.50. More generally, for two posets P1, P2, the product |∆(P1)| × |∆(P2)| is homeo-
morphic to |∆(P )| for the product poset P = P1 × P2.
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1.6. Barycentric subdivision. Let K be a simplicial complex with the set of vertices V .
Then K ⊂ 2V is a poset ordered by inclusion, and its order complex ∆(K) (consisting of the
chains in K, see Example 1.36), is called the barycentric subdivision of K. It turns out that the
geometric realizations of K and ∆(K) are homeomorphic.

Example 1.51. Let us denote a chain σ = {i0 < · · · < im} by [i0, . . . , im] or just i0 . . . im. For
K = ∆[1] = {0, 1, a = 01}, we have ∆(K) = {0, 1, a, [0, a], [1, a]}, where 0, 1, a are the vertices
of ∆(K). The geometric realization of ∆(K) is

0 a 1

which is an interval, homeomorphic to |K| = ∆1.
Let K = ∆[2] (nonempty subsets of [2]) so that |K| = ∆2. Then

K = {0, 1, 2, a = 01, b = 12, c = 02, σ = 012}

is ordered by inclusion: 0, 1 < a < σ etc. Consider a triangulation

0 1

2

a

bc
σ

where we identify the simplices of K with their barycenters (centers of gravity), for example,
a = 01 is identified with the barycenter of {0, 1} and σ = 012 is identified with the barycenter
of {0, 1, 2}. The simplices of ∆(K) (which are chains in K) can be identified with the simplices
of the above triangulation. For example

(1) {0 < a < σ} ⊂ K is identified with the triangle [0, a, σ].
(2) {0, σ}] ⊂ K is identified with the interval [0, σ].
(3) {b} ⊂ K is identified with the vertex b.

This implies that the geometric realization of ∆(K) can be identified with the geometric
realization of K (both are given by the large triangle).

Theorem 1.52. For a finite simplicial complex (V,K), there is a canonical homeomorphism

ϕ : |∆(K)| → |K| , t = (tσ)σ∈K 7→
∑
σ∈K

tσbσ ∈ |K| ⊂ RV ,

where bσ is the barycenter (center of gravity) of ∆(σ) (with ev ∈ RV standard basis vectors)

bσ = 1
n+1

∑
v∈σ

ev ∈ ∆(σ) ⊂ |K| ⊂ RV , σ ∈ Kn.

Proof. Let L = ∆(K) so that L0 = K. Let t = (tσ)σ∈K ∈ |L| ⊂ RK . If supp(t) =

{σ0 < · · · < σn} ∈ L, then supp(ϕ(t)) = σn, hence ϕ(t) ∈
◦
∆(σn) ⊂ |K|. One can show

that ϕ induces a bijection between t ∈ |L| with max supp(t) = σn and
◦
∆(σn) ⊂ |K|. Therefore

ϕ : |L| → |K| is a bijection (and a homeomorphism if K is finite). □
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1.7. Simplicial homology. Consider a ∆-set K (or a triangulated space (X,K)). For every
0 ≤ i ≤ n, consider the coface map δi : [n − 1] → [n] which is an increasing map that misses
i ∈ [n] in the image. Consider the corresponding face map (see Remark 1.21)

∂i = δ∗i : Kn → Kn−1, 0 ≤ i ≤ n.

By Lemma 1.22 we have
∂i∂j = ∂j−1∂i, i < j.

Definition 1.53. Let K be a ∆-set.
(1) Define the group of n-chains Cn = Cn(K) to be the free abelian group with a basis

consisting of n-simplices of K. An element of Cn(K), called an n-chain, is a finite sum∑
σ∈Kn

nσσ, where nσ ∈ Z.
(2) Define the boundary operator (also called the differential)

d = dn : Cn → Cn−1, dn(σ) =
n∑

i=0

(−1)i∂i(σ).

(3) The sequence of homomorphisms between abelian groups

· · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → · · · → C1
d1−→ C0

d0−→ 0→ . . .

satisfies the equation dndn+1 = 0 for all n (see the next Lemma) and is called the chain
complex of K, denoted as C•(K), C• or (C•, d•).

(4) Given a triangulated space (X,K), define CK
• (X) = C•(K).

Example 1.54. For a simplex σ = [v0, . . . , vn], we have

d(σ) =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn].

For example d[v0, v1] = v1 − v0 and d[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1].

Lemma 1.55. The composition Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 is zero (also written as d2 = 0).

Proof. We have

dndn+1(σ) =
n∑

i=0

n+1∑
j=0

(−1)i+j∂i∂j(σ) =
∑
i<j

(−1)i+j∂i∂j(σ) +
∑
i≥j

(−1)i+j∂i∂j(σ)

=
∑
i<j

(−1)i+j∂j−1∂i(σ) +
∑
i≥j

(−1)i+j∂i∂j(σ)

=
∑
i≤j

(−1)i+j+1∂j∂i(σ) +
∑
i≥j

(−1)i+j∂i∂j(σ) = 0

where we used the fact that ∂i∂j = ∂j−1∂i for i < j. □

Note that the equation dndn+1 = 0 implies

Im dn+1 ⊂ Ker dn.

Definition 1.56. Let K be a ∆-set and C• = C•(K) be the corresponding chain complex.
(1) Define the n-th homology group of K (or of the complex C•) to be

Hn(K) = Hn(C) = Ker dn/ Im dn+1.

(2) The elements of Zn(C) = Ker dn ⊂ Cn are called n-cycles and the elements of Bn(C) =

Im dn+1 ⊂ Cn are called n-boundaries .
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(3) If (X,K) is a triangulated space, define the n-th simplicial homology group of X to be
HK

n (X) = Hn(K) which is the n-homology group of CK
• (X).

Remark 1.57. More generally, for any ring R, we define the chain complex C•(K,R) with
Cn(K,R) = R⊗Z Cn(K) (the free R-module with the basis Kn) and simplicial homology groups
(or R-modules) Hn(K,R) = Hn(C•(K,R)). Note that Hn(K,R) ̸≃ R ⊗Z Hn(K) in general,
although this is true if R is a field of characteristic zero (or does not have torsion over Z).

Remark 1.58. We will show later that the simplicial homology groups HK
n (X) are independent

of the triangulation K. But this statement will require a lot of work.

Example 1.59. Consider a sequence of 1-simplices (called a path)

v0 v1 v2 vn−1 vn

a1 a2 an

and a 1-chain c = a1 + · · ·+ an ∈ C1 corresponding to this path. Then

d(c) =
n∑

i=1

(vi − vi−1) = vn − v0.

This means that c is a 1-cycle if and only if vn = v0, that is, the above path is an actual cycle.

Example 1.60. The signs are used to take orientation into account. Consider a triangulation
of a square

31

0 2

τ

σ

with σ = [0, 1, 3] (clockwise) and τ = [0, 2, 3] (anti-clockwise). Then

d(σ) = [1, 3]− [0, 3] + [0, 1] = [0, 1] + [1, 3]− [0, 3]

which corresponds to the boundary of σ going clockwise along the cyclic path 0→ 1→ 3→ 0.
This is why d(σ) is called a 1-boundary. On the other hand

d(σ − τ) = [0, 1] + [1, 3]− [2, 3]− [0, 2]

corresponds to the boundary of the square going clockwise along the cyclic path 0→ 1→ 3→
2→ 0.

Example 1.61. Consider the ∆-set K = ∂∆[2] which is a triangulation of S1

0 1

2

a

bc

Then
d(a) = [1]− [0], d(b) = [2]− [1], d(c) = [2]− [0]

Therefore d(a + b − c) = 0, hence a + b − c is a 1-cycle. It corresponds to the cyclic path
0→ 1→ 2→ 0, hence the name. Let us compute homologies. We have C0 = Z3, C1 = Z3 with
d = d1 : C1 → C0 described above. Then Ker d1 = (a+b−c)Z, hence H1(C) = Ker d1/ Im d2 ≃ Z.
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We have n0[0] +n1[1] +n2[2] ∈ Im d1 ⇐⇒ n0+n1+n2 = 0. Therefore H0(C) = Z3/ Im d1 ≃ Z,
where n0[0] + n1[1] + n2[2] 7→ n0 + n1 + n2. We conclude that

HK
0 (S1) ≃ Z, HK

1 (S1) ≃ Z.

Example 1.62. Consider a triangulation of S1 consisting of a vertex v and a segment e = [v, v].
Then C0 = Zv, C1 = Ze and

d : C1 → C0, de = v − v = 0

with all other differentials equal zero. This implies that

H1(C) = Ker d/0 = Z, H0(C) = Z/ Im d = Z

and all other homology groups are zero. We conclude that HK
0 (S1) = HK

1 (S1) = Z.
Let us consider a different triangulation of S1, with two vertices v0, v1 and two segments

e = [v0, v1], e′ = [v1, v0] between them. Then C0 = Z2, C2 = Z2 and d(e) = v0−v1, d(e′) = v1−v0
can be written as a matrix

d : C1 → C0, d =

(
1 −1
−1 1

)
.

Then Ker d = Z(1, 1), Im d = Z(1,−1) and

H1(C) = Ker d/0 ≃ Z, H0(C) = Z2/ Im d ≃ Z.

We see that the homology groups are the same as before, although our chain complex is different.
We will see later that this is a general phenomenon. Therefore it is enough to find the simplest
possible triangulation of a space in order to compute its homologies.

Example 1.63. Hn(∆
1) = Z for n = 0 and zero otherwise. Hn(∆

2) = Z for n = 0 and zero
otherwise. More generally, one can show that Hn(∆

k) = Z for n = 0 and zero otherwise. The
reason is that ∆n is homotopic to a point.

Example 1.64. We can triangulate S2 by taking two copies of ∆2 and identifying them along
the boundary. Similarly, Sn is obtained by taking two copies σ, τ of ∆n and identifying them
along the boundary. We can show that Hn(S

n) ≃ Z. Let us compute homology groups for S2.

Example 1.65. Consider the following triangulation of the torus T

vv

v v

b

b

a ac
τ

σ

with vertices of σ going along a, b and vertices of τ going along b, a. Then d2(σ) = b− c+ a,
d2(τ) = a− c+ b, d1(a) = d1(b) = d1(c) = 0

Z2 d2−→ Z3 d1−→ Z.

Therefore H0(T ) ≃ Z, H1(T ) = Z3/ Im d2 ≃ Z2, H2(T ) = Ker d2 ≃ Z.

Example 1.66. Define an n-dimensional projective space

RP n = (Rn+1\{0})/R∗ ≃ Sn/Z2,

where R∗ acts on Rn+1 by multiplication and Z2 acts on Sn by the antipodal map x 7→ −x.
For example, we can describe RP 2 as the quotient of the disc D2 with antipodal points on the
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boundary identified. We construct a triangulation of RP 2 by identifying arrows in the following
picture, where antipodal points on the boundary are identified.

12

0 3

b

b

a ac
τ

σ

Let v = 0 ∼ 1, w = 2 ∼ 3. We consider σ = [012] and τ = [013] so that

d2(σ) = b− a+ c, d2(τ) = a− b+ c, d1(a) = d1(b) = w − v, d1(c) = 0.

The corresponding chain complex is

C2 C1 C0

Z2 Z3 Z2

d2 d1

d2 d1

d2 =

−1 1

1 −1
1 1

 , d1 =

(
−1 −1 0

1 1 0

)

We have

Im(d2) =

 1

−1
1

Z+

0

0

2

Z, Ker d1 =

 1

−1
1

Z+

0

0

1

Z.

Therefore H1(K) = Ker d1/ Im d2 ≃ Z/2Z = Z2. The map d2 is injective, hence H2(K) =

Ker d2 = 0. Finally, H0(K) = Z2/ Im d1 ≃ Z. Note that over rational numbers we have
H1(K,Q) ≃ Q/2Q = 0.

Example 1.67. Let us assume that we have a triangulated surface (X,K). Consider its chain
complex Cn = CK

n (X,Q) with rational coefficients

· · · → 0→ C2
d2−→ C1

d1−→ C0 → 0→ . . .

and the corresponding homology groups H0, H1, H2. It’s a simple exercise in linear algebra to
show that

e(X) = #K0 −#K1 +#K2 = dimC0 − dimC1 + dimC2 = dimH0 − dimH1 + dimH2.

As we will see later, the vector spaces Hn are independent of a triangulation. In particular,
the above number e(X), called the Euler characteristic of X, is independent of a triangulation.
Compare this with Example 1.1, where we considered a triangulation of S2. Of course all the
arguments work also for higher dimensional spaces.
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2. Homological algebra

Let R be a ring. Recall that an R-module M is an abelian group equipped with a map

R×M →M, (a,m) 7→ am,

such that, for all a, b ∈ R and x, y ∈M ,

(1) a(bx) = (ab)x.
(2) 1Rx = x.
(3) a(x+ y) = ax+ ay.
(4) (a+ b)x = ax+ ay.

If R = Z, then an R-module is just an abelian group. If R is a field (for example R or C), then
an R-module is a vector space over R. A map f : M → N between two R-modules is called a
homomorphism (or an R-linear map) if for all a ∈ R and x, y ∈M

(1) f(ax) = af(x).
(2) f(x+ y) = f(x) + f(y).

Definition 2.1.
(1) A (chain) complex C• (or (C•, d•)) is a sequence of R-modules and homomorphisms

· · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → . . .

such that dndn+1 = 0 for all n ∈ Z (also written as d2 = 0). The map dn is called a
differential (or a boundary operator).

(2) The elements of Cn are called n-chains . The elements of

Zn(C) = Ker dn, Bn(C) = Im dn+1

are called n-cycles and n-boundaries respectively. Note that d2 = 0 implies Bn(C) ⊂
Zn(C). The module

Hn(C) = Zn(C)/Bn(C) = Ker dn/ Im dn+1

is called the n-th homology group (or homology module). Its elements are called the
n-th homology classes .

Definition 2.2.
(1) A sequence of homomorphisms M1

f−→M2
g−→M3 is called exact at M2 if Im f = Ker g.

(2) A complex C• is called exact (or acyclic) if it is exact at every Cn. Equivalently,
Hn(C) = 0 for all n.

Lemma 2.3.
(1) A sequence 0→M1

f−→M2 is exact at M1 ⇐⇒ f is a monomorphism.
(2) A sequence M1

f−→M2 → 0 is exact at M2 ⇐⇒ f is an epimorphism.
(3) A sequence 0→M1

f−→M2
g−→M3 → 0 with gf = 0 is exact (at all components) ⇐⇒ f

is a monomorphism, g is an epimorphism and Im f = Ker g. Such sequence is called a
short exact sequence.

(4) If M ′ ⊂M is a submodule, then 0→M ′ →M →M/M ′ → 0 is a short exact sequence.

Definition 2.4. A chain map f : A• → B• between complexes A•, B• is a collection of homo-
morphisms fn : An → Bn for n ∈ Z such that dnfn = fn−1dn ∀n. This means that we have a
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commutative diagram

. . . An+1 An An−1 . . .

. . . Bn+1 Bn Bn−1 . . .

dn+1

fn+1

dn

fn fn−1

dn+1 dn

We will always assume that a map between complexes is a chain map unless otherwise stated.

Lemma 2.5. A chain map f : A• → B• induces homomorphisms f∗ = Hnf : Hn(A)→ Hn(B)

between homology modules.

Proof. Given x ∈ Zn(A) = Ker(d : An → An−1), we have df(x) = fd(x) = 0, hence f(x) ∈
Zn(B) = Ker(d : Bn → Bn−1). We define then f∗(x) = [f(x)] ∈ Hn(B) = Zn(B)/Bn(B). We
need to show that this definition is independent of the choice of x in its homology class, that is,
f∗(x+ dy) = f∗(x) for y ∈ An+1. But f∗(dy) = [fd(y)] = [df(y)] = 0 as df(y) ∈ Bn(B). □

Definition 2.6.
(1) Let f, g : A• → B• be two chain maps. A chain homotopy s between f and g (or from f

to g, written as s : f ∼ g) is a sequence of homomorphisms sn : An → Bn+1 such that

dn+1sn + sn−1dn = gn − fn, ∀n ∈ Z

. . . An+1 An An−1 . . .

. . . Bn+1 Bn Bn−1 . . .

dn+1

fn+1
sn

dn

fn fn−1
sn−1

dn+1 dn

Chain maps f, g are called homotopic (written as f ∼ g) if such s exists.
(2) A chain map f : A• → B• is called null-homotopic if f ∼ 0.
(3) A chain map f : A• → B• is called a homotopy equivalence if there exists a chain map

g : B• → A• such that fg ∼ 1B and gf ∼ 1A. In this case g is called a homotopy inverse
of f and A•, B• are called homotopy equivalent complexes .

(4) A chain complex A• is called contractible (or null-homotopic) if 1A ∼ 0.

Remark 2.7. A chain complex A• is null-homotopic ⇐⇒ A• is homotopy equivalent to the
zero complex. Indeed, consider the unique chain maps f = 0: A• → 0 and g = 0: 0→ A•. If
1A ∼ 0, then gf = 0 ∼ 1A and fg = 0 = 10. Therefore f is a homotopy equivalence. Conversely,
if f : A• → 0 has a homotopy inverse g : 0→ A•, then 0 = gf ∼ 1A.

Lemma 2.8.
(1) The homotopy relation is an equivalence relation.
(2) The homotopy relation is compatible with composition: if f, g : A• → B• are homotopic

and f ′, g′ : B• → C• are homotopic, then f ′f ∼ g′g.

Proof. cl 1 It is clear that f ∼ f and if s : f ∼ g, then −s is a homotopy between g and f :
f − g = d(−s)+ (−s)d. We need to show transitivity: if s : f ∼ g and t : g ∼ h, then f ∼ h. We
have h− f = (g− f) + (h− g) = d(s+ t) + (s+ t)d, hence s+ t is a homotopy between f and h.

cl 2 Let us show that f ′f ∼ f ′g. Similarly one can show that f ′g ∼ g′g and then by transitivity
f ′f ∼ g′g. If s : f ∼ g, then

f ′g − f ′f = f ′(ds+ sd) = d(f ′s) + (f ′s)d,

where we used the property f ′d = df ′. This implies that f ′s is a homotopy between f ′f, f ′g. □
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Lemma 2.9. If f, g : A• → B• are homotopic, then they induce the same morphisms of
homologies: f∗ = g∗ : Hn(A)→ Hn(B).

Proof. Let s : f ∼ g. Given x ∈ Zn(A) = Ker(dn : An → An−1), we need to show that
f(x), g(x) ∈ Zn(B) coincide modulo Bn(B) = Im(dn+1 : Bn+1 → Bn). But gx − fx = (g −
f)(x) = dsx+ sdx = dsx ∈ Im dn+1, where we used the fact that dx = 0. □

Corollary 2.10. A homotopy equivalence induces an isomorphism between homology groups.

Proof. Let f : A• → B• have a homotopy inverse g : B• → A•. Then fg ∼ 1B implies f∗g∗ = 1

and gf ∼ 1A implies g∗f∗ = 1. This means that f∗ : Hn(A)→ Hn(B) is an isomorphism. □

Theorem 2.11 (Snake lemma). Consider a commutative diagram

Ker f Ker g Kerh

X Y Z 0

0 X ′ Y ′ Z ′

Coker f Coker g Cokerh

∂

i

f

p

g h

j q

with exact middle rows. Then there is an exact sequence

Ker f → Ker g → Kerh
∂−→ Coker f → Coker g → Cokerh,

where ∂ is defined by j−1gp−1.

Proof. We will show exactness only at Ker g and Kerh. First let us show that ∂ is well defined.
For z ∈ Kerh choose y ∈ Y with py = z. Then qgy = hpy = hz = 0 =⇒ gy = jx′ for a unique
x′ ∈ X ′. Then we define ∂(z) = [x′] = x′ + Im f . If ȳ ∈ Y is another element with pȳ = z =⇒
p(ȳ − y) = 0 =⇒ ȳ − y = ix for some x ∈ X =⇒ gȳ − gy = gix = jfx =⇒ gȳ = j(x′ + fx)

and we note that x′ and x′ + fx are equivalent modulo Im f .
To prove exactness at Ker g, consider y ∈ Ker g with py = 0. Then y = ix for some x ∈ X

=⇒ jfx = gix = gy = 0 =⇒ fx = 0 =⇒ x ∈ Ker f .
To prove exactness at Kerh, we first note that ∂p = 0. Indeed, if z = py for some y ∈ Ker g,

then by the above construction ∂(z) = [x′], where jx′ = gy = 0, hence x′ = 0. This implies
that ∂p(y) = ∂(z) = 0. On the other hand, assume that z ∈ Ker ∂. Using the above notation
we conclude that x′ ∈ Im f =⇒ x′ = fx for some x ∈ X. Then gy = jx′ = jfx = gix =⇒
ȳ = y−ix ∈ Ker g and pȳ = py−pix = py = z. This implies that z ∈ Im(p : Ker g → Kerh). □

Definition 2.12. A sequence of chain maps

0→ A•
f−→ B•

g−→ C• → 0

is called a short exact sequence of complexes if

0→ An
fn−→ Bn

gn−→ Cn → 0

are short exact sequences of modules for all n.

Theorem 2.13 (Long exact sequence). Consider a short exact sequence of complexes

0→ A•
f−→ D•

g−→ C• → 0.
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Then there is a long exact sequence of homology groups:

· · · → Hn(A)
f∗−→ Hn(D)

g∗−→ Hn(C)
∂−→ Hn−1(A)

f∗−→ Hn−1(D)
g∗−→ Hn−1(C)→ . . .

Proof. We will apply the Snake lemma to the following diagram

An/Bn(A) Dn/Bn(D) Cn/Bn(C) 0

0 Zn−1(A) Zn−1(D) Zn−1(C)

f

d

g

d d

f g

We need to check that the rows are exact. Let us show that the bottom row is exact. It is clear
that Zn−1(A) → Zn−1(D) is injective as An−1 → Dn−1 is injective. Let us show exactness at
Zn−1(D). Assume that x ∈ Zn−1(D) is such that g(x) = 0. Then there exists y ∈ An−1 such
that f(y) = 0. Then fd(y) = df(y) = 0, hence d(y) = 0 as f is injective. This implies that
y ∈ Zn−1(A), hence the bottom sequence is exact at Zn−1(D).

Note that
Ker(d : An/Bn(A)→ Zn−1(A)) ∼ Zn(A)/Bn(A) = Hn(A),

Coker(d : An/Bn(A)→ Zn−1(A)) ∼ Zn−1(A)/Bn−1(A) = Hn−1(A)

and the same applies to other vertical maps. From the Snake lemma we obtain an exact sequence

Hn(A)
f∗−→ Hn(D)

g∗−→ Hn(C)
∂−→ Hn−1(A)

f∗−→ Hn−1(D)
g∗−→ Hn−1(C)

□

Theorem 2.14 (Five-lemma). Consider a commutative diagram with exact rows:

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

d

f1

d

f2

d

f3

d

f4 f5

d d d d

If f1, f2, f4, f5 are isomorphisms, then f3 is also an isomorphism.

Proof. We will show that f3 is injective using the so-called diagram chasing. Let x ∈ A3

and f3x = 0 =⇒ 0 = df3x = f4dx =⇒ dx = 0 =⇒ x = dy for some y ∈ A2 =⇒
0 = f3x = f3dy = df2y =⇒ f2y = dz for some z ∈ B1. Let z = f1z

′ for some z′ ∈ A1. Then
f2y = df1z

′ = f2dz
′ =⇒ y = dz′ =⇒ x = dy = d2z′ = 0. This means that Ker f3 = 0. □
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3. Singular homology

3.1. Definition and basic properties.

Definition 3.1. Let X be a space.

(1) A continuous map σ : ∆n → X is called a singular n-simplex of X.
(2) Let Sn(X) be the set of singular n-simplices of X. For any increasing f : [m] → [n],

define

f ∗ : Sn(X)→ Sm(X), [∆n σ−→ X] 7→ [∆m ∆f

−→ ∆n σ−→ X].

In particular, define ∂i = δ∗i : Sn(X)→ Sn−1(X), where δi : [n− 1]→ [n] is the i-th facet.
We obtain a ∆-set S(X), called a singular ∆-set .

(3) Define the singular chain complex C(X) with the group of n-chains Cn(X) equal the free
abelian group generated by singular n-simplices and differential (also called a boundary
operator),

d : Cn(X)→ Cn−1(X), d(σ) =
n∑

i=0

(−1)i∂i(σ).

(4) For any abelian group R, define the chain complex C(X,R) with the group of n-chains

Cn(X,R) = Cn(X)⊗Z R.

If R is a ring, then Cn(X,R) is equal to the free R-module generated by singular
n-simplices. We have Cn(X,Z) = Cn(X).

Remark 3.2. Note that C(X) is the chain complex associated with the ∆-set S(X), hence we
automatically have d2 = 0 by Lemma 1.55.

Remark 3.3.* Let ssSet be the category of ∆-sets and Top be the category of topological
spaces. Then the above construction produces a functor S : Top→ ssSet, X 7→ S(X). On the
other hand we have the geometric realization functor ssSet→ Top, K 7→ |K|. One can show
that Top(|K| , X) ≃ ssSet(K,S(X)), meaning that these functors are adjoint to each other.

Definition 3.4. Define the singular homology groups of X:

Hn(X) = Hn(C(X)), n ≥ 0.

More generally, define Hn(X,R) = Hn(C(X,R)) for any abelian group R.

Proposition 3.5. Let X =
⊔

α Xα be a decomposition of X into its connected components.
Then Hn(X) ≃

⊕
α Hn(Xα).

Proof. Every singular n-simplex σ : ∆n → X has its image in one connected component. This
implies that Cn(X) =

⊕
αCn(Xα). The differential d takes Cn(Xα) to Cn−1(Xα), hence there is

a similar splitting of Ker d and Im d, for example,

Ker
(
Cn(Xα)

d−→ Cn−1(Xα)
)
=

⊕
α

Ker
(
Cn(Xα)

d−→ Cn−1(Xα)
)
.

This implies that the same is true for homology groups, hence Hn(X) ≃
⊕

αHn(Xα). □

Proposition 3.6. If X ̸= ∅ is path-connected, then H0(X) ≃ Z. Generally, if X =
⊔

α Xα is a
decomposition into connected components, then H0(X) ≃

⊕
α Z.
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Proof. The singular chain complex has the form

· · · → C1(X)
d1−→ C0(X)→ 0→ . . . ,

hence H0(X) = C0(X)/ Im d1. We can identify ∆0 with a point and ∆1 with an interval [0, 1].
Then a 0-simplex can be identified with a point x ∈ X and a 1-simplex can be identified with
a path γ : [0, 1] → X. Under this identification d1(γ) = γ(1) − γ(0) ∈ C0(X). Consider a
homomorphism

ε : C0(X)→ Z,
∑

nixi 7→
∑

ni.

This map is surjective as X ̸= ∅. We will show that Ker ε = Im d1 and this would imply that
Z ≃ C0(X)/Ker ε ≃ C0(X)/ Im d1 as required.

We have εd1(γ) = ε(γ(1) − γ(0)) = 0, hence Im d1 ⊂ Ker ε. Assume that
∑

i nixi ∈ Ker ε,
which means that

∑
i ni = 0. Choose a basepoint x0 ∈ X and a path γi : [0, 1] → X from x0

to xi (meaning that γ(0) = x0 and γ(1) = xi) for every i. Then d1(
∑

niγi) =
∑

ni(xi − x0) =∑
nixi − (

∑
ni)x0 =

∑
nixi. This implies that Ker ε ⊂ Im d1. □

Proposition 3.7. If X is a point, then

Hn(X) =

{
Z n = 0,

0 n > 0.

Proof. If X is a point, there is a unique singular n-simplex σn : ∆
n → X. Moreover, we have

∂i(σn) = σn−1, hence dn(σn) =
∑n

i=0(−1)iσn−1 = 0 for n odd and equals σn−1 for n even. This
means that the singular chain complex C(X) has the form

· · · → Z ∼−→ Z 0−→ Z ∼−→ Z 0−→ Z→ 0

We see that for n > 0 we have Hn(X) = Ker(0)/ Im(id) = Z/Z = 0 if n is odd and Hn(X) =

Ker(id)/ Im(0) = 0 if n is even. We also have H0(X) = Z. □

Definition 3.8. Given a nonempty space X, define the augmented chain complex

· · · → C2(X)
d2−→ C1(X)

d1−→ C0(X)
ε−→ Z→ 0,

where ε(
∑

i nixi) =
∑

i ni. Its homology groups H̃n(X) are called reduced homology groups .

Remark 3.9. We have H̃n(X) = Hn(X) for n > 0. On the other hand ε∗ : H0(X) → Z is
surjective and H̃0(X) = Ker ε∗. If X is path-connected, then H̃0(X) = 0. In general there is a
(non-canonical) isomorphism H0(X) ≃ H̃0(X)⊕ Z.

Example 3.10. For a 1-point set {x}, we have H̃n({x}) = 0 for all n.
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3.2. Homotopy invariance. Let f : X → Y be a continuous map between two spaces. It
induces a map f∗ : S(X) → S(Y ) between ∆-sets, where a simplex σ : ∆n → X is sent to
f♯(σ) = f ◦ σ : ∆n → Y . It also induces a map f♯ : C(X)→ C(Y ) between chain complexes.

Proposition 3.11. The map f♯ : S(X)→ S(Y ) is a simplicial morphism 1.27.

Proof. Given an increasing map ϕ : [m] → [n], we need to show that the following diagram
commutes

Sn(X) Sm(X)

Sn(Y ) Sm(Y )

ϕ∗

f♯ f♯

ϕ∗

For any σ : ∆n → X, we have f♯ϕ∗(σ) = f♯(σ∆
ϕ) = f ◦(σ∆ϕ) and ϕ∗f♯(σ) = ϕ∗(fσ) = (fσ)◦∆ϕ,

where ∆ϕ : ∆m → ∆n. □

Proposition 3.12. The map f♯ : C(X) → C(Y ) is a chain map 2.4. Therefore it induces a
homomorphism f∗ = Hn(f♯) : Hn(X)→ Hn(Y ) for all n ≥ 0.

Proof. By the previous result we have f♯∂i = ∂if♯, where ∂i = δ∗i and δi : [n − 1] → [n] is the
i-th face. This implies that f♯dn = dnf♯, where dn =

∑n
i=0(−1)i∂i.

Cn(X) Cn−1(X)

Cn(Y ) Cn−1(Y )

dn

f♯ f♯

dn

□

Definition 3.13. Let X, Y be two spaces.
(1) Two maps f, g : X → Y are called homotopic (written as f ∼ g) if there exists a

(continuous) map F : X × I → Y such that F0 = f and F1 = g, where Ft(x) = F (x, t).
The map F as above is called a homotopy between f and g.

(2) A map f : X → Y is called null-homotopic if it is homotopic to a constant map.
(3) A map f : X → Y is called a homotopy equivalence if there exists a map g : Y → X such

that gf ∼ 1X and fg ∼ 1Y . The spaces X, Y are called homotopy equivalent in this
case.

(4) A space X is called contractible (or null-homotopic) if 1X is null-homotopic, meaning
that there exists a (continuous) map F : X × I → X such that F0 = 1X and F1 is a
constant map. Equivalently, X is homotopy equivalent to a point.

Theorem 3.14. If two continuous maps f, g : X → Y are homotopic, then they induce the same
homomorphisms f∗ = g∗ : Hn(X)→ Hn(Y ).

Proof. For every t ∈ I = ∆1, consider the map ηt : X → X × I, x 7→ (x, t). In particular,
consider chain maps η0♯ , η1♯ : C(X)→ C(X× I). We will construct a chain homotopy P : η0♯ ∼ η1♯ ,
that is, maps P : Cn(X)→ Cn+1(X × I), called prism operators, satisfying

dP + Pd = η1♯ − η0♯ .

If F : X × I → Y is a homotopy between f, g, then f = Fη0 and g = Fη1. Therefore we obtain
a chain homotopy F♯P between f♯ = F♯η

0
♯ and g♯ = h♯η

1
♯ . This implies that f∗ = g∗.

A singular simplex σ : ∆n → X induces a map

(σ × 1)♯ : Cn+1(∆
n × I)→ Cn+1(X × I).
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We will construct
P (σ) = (σ × 1)♯(an) ∈ Cn+1(X × I),

where an ∈ Cn+1(∆
n × I) is a certain chain corresponding to a triangulation of ∆n × I (the

prism). Then the equation
dP = η1♯ − η0♯ − Pd

can be interpreted as a statement that the boundary of ∆n × I can be represented as a
combination of ∆n × {1}, ∆n × {0} and the sides ∂∆n × I.

We will use the triangulation of ∆n × I constructed in Theorem 1.47. In particular, the
parametrization of maximal simplices of ∆n × I that appeared there. Consider the vectors
vi = (ei, 0) and wi = (ei, 1) in ∆n × I and the singular n+ 1-simplices [v0, . . . , vi, wi, . . . , wn] ∈
Cn+1(∆

n × I) (cf. Theorem 1.47). Define

an =
n∑

i=0

(−1)i[v0, . . . , vi, wi, . . . , wn] ∈ Cn+1(∆
n × I)

and P (σ) = (σ × 1)♯(an). Then

dP (σ) =
∑
j≤i

(−1)i+j(σ × 1)|[v0, . . . , v̂j, . . . , vi, wi, . . . , wn]

+
∑
j≥i

(−1)i+(j+1)(σ × 1)|[v0, . . . , vi, wi, . . . , ŵj, . . . , wn].

On the other hand

Pd(σ) =
∑
j

(−1)jP (∂jσ) =
∑
j

(−1)j(∂jσ × 1)♯(an−1)

=
∑
j<i

(−1)j+(i−1)(σ × 1)|[v0, . . . , v̂j, . . . , vi, wi, . . . , wn]

+
∑
j>i

(−1)j+i(σ × 1)|[v0, . . . , vi, wi, . . . , ŵj, . . . , wn].

The sum dP (σ) + Pd(σ) contains only summands with i = j and all of them cancel except the
following two:

(σ × 1)|[v̂0, w0, . . . , wn]− (σ × 1)|[v0, . . . , vn, ŵn] = η1σ − η0σ.

We conclude that dP + Pd = η1♯ − η0♯ . □

Corollary 3.15. We have
(1) If f : X → Y is a homotopy equivalence, then f∗ : Hn(X)→ Hn(Y ) is an isomorphism

(the same is true for the reduced homologies).
(2) If X is contractible, then H̃n(X) = 0 for all n.

Proof. cl 1 Let g : Y → X be homotopy inverse to f , meaning that gf ∼ 1X and fg ∼ 1Y . This
implies that (gf)∗ = 1 : Hn(X) → Hn(X) and (fg)∗ = 1 : Hn(Y ) → Hn(Y ) by the previous
theorem. Therefore f∗ : Hn(X)→ Hn(Y ) has the inverse g∗ : Hn(Y )→ Hn(X), hence f∗ is an
isomorphism.

cl 2 If X is contractible, then X is homotopy equivalent to a point, hence H̃n(X) ≃ H̃n(pt)

by the previous statement. But we know that H̃n(pt) = 0 for all n, hence H̃n(X) = 0 for all
n. □

Example 3.16. The space Dn is contractible, hence H̃i(D
n) ≃ H̃i(pt) = 0 for all i. The same

is true for Rn.
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3.3. Relative homology groups.

Definition 3.17.
(1) A pair (X,A) of topological spaces consists of a space X and a subspace A ⊂ X.
(2) A map of pairs f : (X,A)→ (Y,B) is a continuous map f : X → Y such that f(A) ⊂ B.

Given pair (X,A), define

Cn(X,A) = Cn(X)/Cn(A), n ≥ 0.

The differential d : Cn(X) → Cn−1(X) maps Cn(A) to Cn−1(A), hence it induces a map
d : Cn(X,A)→ Cn−1(X,A). We obtain a chain complex

· · · → Cn+1(X,A)
d−→ Cn(X,A)

d−→ Cn−1(X,A)→ . . .

Its homology groups Hn(X,A) are called relative homology groups .

Theorem 3.18. For any pair (X,A) there is a long exact sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A)
∂−→ Hn−1(A)→ Hn−1(X)→ Hn−1(X,A)

∂−→ . . .

· · · → H0(X)→ H0(X,A)→ 0

Proof. We have a short exact sequence of chain complexes

0→ C(A)→ C(X)→ C(X,A)→ 0

by the construction of the complex C(X,A). Applying Theorem 2.13 we obtain the required
long exact sequence. □

Remark 3.19. If A ̸= ∅, then we can use reduced homology groups:

· · · → H̃n(A)→ H̃n(X)→ Hn(X,A)→ H̃n−1(A)→ H̃n−1(X)→ Hn−1(X,A)→ . . .

· · · → H̃0(X)→ H0(X,A)→ 0

Example 3.20. Given a point x ∈ X, we have H̃n(x) = 0 for all n, hence we obtain from the
long exact sequence

Hn(X, x) ≃ H̃n(X) ∀n.

Example 3.21. Consider a disc Dn and its boundary ∂Dn = Sn−1. We have an exact sequence

· · · → H̃i(D
n)→ Hi(D

n, Sn−1)→ H̃i−1(S
n−1)→ H̃i−1(D

n)→ . . .

As Dn is contractible, we obtain that H̃i(D
n) = 0 for all i. Therefore there is an isomorphism

Hi(D
n, Sn−1) ≃ H̃i−1(S

n−1)

Remark 3.22. A subspace A ⊂ X is called a retract of X if there exists a map r : X → A such
that ri = 1A, where i : A→ X is the embedding. In this case the complex

0→ C(A)
i♯−→ C(X)→ C(X,A)→ 0

splits by the map r♯ (we get a direct sum decomposition C(X) = C(A)⊕ C(X,A)). Therefore
there is a short exact sequence

0→ Hn(A)→ Hn(X)→ Hn(X,A)→ 0

which splits by r∗. This means that the boundary map ∂ : Hn(X,A)→ Hn−1(A) in the above
long exact sequence is zero.
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3.4. Excision and Mayer-Vietoris. Let X be a space and U = (Ui)i∈I be a collection of
subspaces, such that X =

⋃
i U

◦
i . Let CU

n (X) ⊆ Cn(X) be the group generated by simplices
σ : ∆n → X such that σ(∆n) ⊆ Ui for some i ∈ I. Then we obtain a chain subcomplex
CU(X) ⊆ C(X). We denote its homology groups by HU

n (X) for n ∈ Z.

Theorem 3.23. The inclusion j : CU(X) → C(X) is a chain homotopy equivalence. In
particular, it induces isomorphisms HU

n (X) ≃ Hn(X).

Theorem 3.24 (Excision theorem). Let Z ⊂ A ⊂ X be subspaces such that Z̄ ⊂ A◦. Then the
inclusion (X − Z,A− Z) ↪→ (X,A) induces isomorphisms

Hn(X − Z,A− Z) ≃ Hn(X,A) ∀n.

Equivalently, for any subspaces A,B ⊂ X with X = A◦∪B◦ (we take B = X−Z), the inclusion
(B,A ∩B) ↪→ (X,A) induces isomorphisms

Hn(B,A ∩B) ≃ Hn(X,A) ∀n.

Proof. Let A,B ⊂ X be such that X = A◦ ∪B◦. We consider the covering U = (A,B). Then
we have subgroups Cn(A) ⊂ Cn(X), Cn(B) ⊂ Cn(X) such that

Cn(A ∩B) = Cn(A) ∩ Cn(B), CU
n (X) = Cn(A) + Cn(B).

Therefore
Cn(B)

Cn(A ∩B)
=

Cn(B)

Cn(A) ∩ Cn(B)
≃ Cn(A) + Cn(B)

Cn(A)
=

CU
n (X)

Cn(A)
.

We claim that the homology groups of CU(X)/C(A) and C(X)/C(A) are isomorphic, hence

Hn(B,A ∩B) ≃ Hn(C
U(X)/C(A)) ≃ Hn(C(X)/C(A)) = Hn(X,A)

as required. To prove the claim, we consider a commutative diagram

0 C(A) CU(X) CU(X)/C(A) 0

0 C(A) C(X) C(X)/C(A) 0

Taking the long exact sequences of both rows we get

Hn(A) HU
n (X) Hn(C

U(X)/C(A)) Hn−1(A) HU
n−1(X)

Hn(A) Hn(X) Hn(C(X)/C(A)) Hn−1(A) Hn−1(X)

The outer arrows are isomorphisms by the previous theorem. Therefore the middle arrow is also
an isomorphism by the 5-lemma. □

Example 3.25. We know that H̃i(S
n) ≃ Hi(S

n,pt). Let Dn
− ⊂ Sn be the lower hemisphere.

Then H̃i(D
n
−) = H̃i(pt) = 0 and we obtain Hi(S

n,pt) ≃ Hi(S
n, Dn

−) using the 5-lemma. We
apply the excision theorem to X = Sn, A = Dn

− and Z ⊂ Dn
− a slightly smaller disc. Note that

X −Z is homotopic to Dn
+ (the upper hemisphere) and A−Z is homotopic to Sn−1. We obtain

Hi(S
n, Dn

−) ≃ Hi(X − Z,A− Z) ≃ Hi(D
n
+, S

n−1) ≃ H̃i−1(S
n−1),

where the last isomorphism follows from the long exact sequence for the pair (Dn, Sn−1). We
obtain

H̃i(S
n) ≃ Hi(S

n,pt) ≃ Hi(S
n, Dn

−) ≃ H̃i−1(S
n−1).
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Note that S0 = {x ∈ R | |x| = 1} = {±1}, hence H̃i(S
0) = 0 for i ≠ 0 and H̃0(S

0) = Z. We
obtain inductively

H̃i(S
n) =

{
Z i = n

0 i ̸= n.

Theorem 3.26 (Mayer-Vietoris sequence). Let A,B ⊂ X be subspaces such that A◦ ∪B◦ = X.
Then there is a long exact sequence

· · · → Hn(A ∩ B) → Hn(A) ⊕ Hn(B) → Hn(X)
∂−→ Hn−1(A ∩ B) → · · · → H0(X) → 0

If A ∩B ̸= ∅, then we have a similar exact sequence of reduced homology groups.

Proof. Let us consider the covering U = (A,B) of X. We have

Cn(A ∩B) = Cn(A) ∩ Cn(B), CU
n (X) = Cn(A) + Cn(B)

and short exact sequences

0→ Cn(A) ∩ Cn(B)→ Cn(A)⊕ Cn(B)
f−→ Cn(A) + Cn(B)→ 0, f(x, y) = x− y

inducing a short exact sequence of complexes 0→ C(A ∩B)→ C(A)⊕ C(B)→ CU(X)→ 0.
The corresponding long exact sequence of homology groups is

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ HU
n (X)→ . . .

Now we use the fact that HU
n (X) ≃ Hn(X). □

Example 3.27. Let X = Sn and let A ⊃ Dn
+ and B ⊃ Dn

− be open neighborhoods. Then
A ∩B is homotopic to Sn−1 and A,B are contractible. We obtain an exact sequence

H̃i(A)⊕ H̃i(B)→ H̃i(S
n)→ H̃i−1(S

n−1)→ H̃i−1(A)⊕ H̃i−1(B)

The outer groups are trivial, hence H̃i(S
n) ≃ H̃i−1(S

n−1). This allows us to compute H̃i(S
n) in

the same way as before.

Example 3.28. Define the suspension

ΣX =
X × I

(x, 0) ∼ (y, 0), (x, 1) ∼ (y, 1)
.

One can think about it as a union of two cones CX = X × I/X ×{0} glued along the boundary
X. For example C(Sn−1) ≃ Dn and Σ(Sn−1) is a union of two discs Dn glued along the
boundary, hence Σ(Sn−1) ≃ Sn. Let A,B ⊂ ΣX be the above cones (more precisely, their
open neighborhoods). Then A,B ≃ CX are contractible (prove this) and A ∩B is homotopy
equivalent to X. We obtain an exact sequence

H̃i(A)⊕ H̃i(B)→ H̃i(ΣX)→ H̃i−1(A ∩B)→ H̃i−1(A)⊕ H̃i−1(B)

The outer groups are zero, hence

H̃i(ΣX) ≃ H̃i−1(A ∩B) ≃ H̃i−1(X).

This generalizes the formula H̃i(S
n) ≃ H̃i−1(S

n−1).
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3.5. Long exact sequence for good pairs.

Definition 3.29. Let A ⊂ X be a subspace and i : A ↪→ X be an inclusion. Then A is called
(1) A retract if there exists a map r : X → A such that ri = 1A. The map r as above is

called a retraction.
(2) A deformation retract if there exists a map r : X → A such that ri = 1A and ir ∼ 1X .

Equivalently, there exists a homotopy h : X × I → X such that h0 = 1X , h1(X) ⊂ A

and h1|A = 1A (we define ht(x) = h(x, t) and r = h1 : X → A). The map h as above is
called a deformation retraction. In this case i∗ : H•(A)→ H•(X) is an isomorphism.

(3) A strong deformation retract if there exists a homotopy h : X × I → X such that
h0 = 1X , h1(X) ⊂ A and ht|A = 1A for all t ∈ I. The map h as above is called a strong
deformation retraction.

Example 3.30. Consider A = Sn−1 ⊂ X = Rn\{0} and define

h : X × I → X, (x, t) 7→ (1− t+ t/ ∥x∥)x.

This is a strong deformation retract, as h0(x) = x for all x ∈ Rn\{0}, h1(x) = x/ ∥x∥ ∈ A for
all x ∈ Rn\{0}, ht(x) = (1− t+ t)x = x for all x ∈ Sn−1. Therefore H•(S

n−1)→ H•(Rn\{0})
is an isomorphism.

Definition 3.31. A pair (X,A) is called good if A ⊂ X is nonempty, closed and is a strong
deformation retract of its neighborhood V ⊂ X (this means that A ⊂ V ◦).

Theorem 3.32. If (X,A) is a good pair, then Hn(X,A) ≃ H̃n(X/A).

Proof. Consider the quotient map q : (X,A) → (X/A,A/A). The space A/A has just one
point, hence Hn(X/A,A/A) ≃ H̃n(X/A) by Example 3.20. Therefore we need to show that
q∗ : Hn(X,A)→ Hn(X/A,A/A) is an isomorphism.

Let A ⊂ V ⊂ X be a neighborhood such that A is a deformation retract of V . Consider the
diagram

Hn(X,A) Hn(X, V ) Hn(X − A, V − A)

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A− A/A, V/A− A/A)

q∗ q∗ q∗

We need to show that the left vertical arrow is an isomorphism. For this we will show that all
horizontal arrows and the right vertical arrow are isomorphisms.

As A ⊂ V is a deformation retract, we obtain that Hn(A)→ Hn(V ) are isomorphisms, hence
Hn(X,A)→ Hn(X, V ) are isomorphisms (by the long exact sequence and 5-lemma). The same
argument applies to the left bottom arrow: if h : V ×I → V is a strong deformation retraction of
A ⊂ V , then it induces a homotopy h : V/A× I → V/A which is a strong deformation retraction
of A/A ⊂ V/A. Then we conclude that Hn(X/A,A/A) ≃ Hn(X/A, V/A) as before.

The right horizontal arrows are isomorphisms by excision. The right vertical arrow is an
isomorphism because it is induced by a homeomorphism between pairs. □

Theorem 3.33. Let (X,A) be a good pair. Then there is a long exact sequence

· · · → H̃n(A)
i∗−→ H̃n(X)

π∗−→ H̃n(X/A)
∂−→ H̃n−1(A)

i∗−→ H̃n−1(X)
π∗−→ . . .

. . .
π∗−→ H̃0(X/A)→ 0

where i : A→ X is the inclusion and π : X → X/A is the quotient map.
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Proof. By Theorem 3.18 we have a similar long exact sequence for the relative homology groups
Hn(X,A) (note that we can consider reduced homology groups H̃n(X) and H̃n(A) there)

· · · → H̃n(A)
i∗−→ H̃n(X) −→ Hn(X,A)

∂−→ H̃n−1(A)
i∗−→ H̃n−1(X) −→ . . .

. . .
π∗−→ H0(X,A)→ 0

By the previous theorem we have Hn(X,A) ≃ H̃n(X/A). □

Lemma 3.34. We have

H̃i(S
n) =

{
Z i = n

0 i ̸= n.

Proof. Choose a good pair (X,A) = (Dn, Sn−1) for n ≥ 1. Then X/A ≃ Sn. We have
H̃i(D

n) = 0 for all i ≥ 0 as Dn is contractible. From the long exact sequence for the pair (X,A)

we obtain
0 = H̃i(D

n)→ H̃i(S
n)

∂−→ H̃i−1(S
n−1)→ H̃i−1(D

n) = 0,

Hence H̃i(S
n) ≃ H̃i−1(S

n−1) for i > 0 and H̃0(S
n) = 0. Now the result follows by induction. In

the case of S0, we have S0 = {±1} ⊂ R, hence H0(S
0) ≃ Z2 and H̃0(S

0) ≃ Z. We also have
H̃i(S

0) = 0 for i > 0. □

Corollary 3.35. Rn are not homeomorphic to each other for different n.

Proof. We have seen in Example 3.30 that Sn−1 ⊂ Rn\{0} is a deformation retract. This implies
H̃i(Rn\{0}) ≃ H̃i(S

n−1) and we have seen that spheres of different dimension have different
homology groups. □

Remark 3.36. Similarly, if U ⊂ Rm and V ⊂ Rn are nonempty open and homeomorphic,
then m = n. Indeed, we have Hi(U,U − {x}) ≃ Hi(Rm,Rm − {x}) by excision: consider
Z = Rm − U ⊂ A = Rm − {x}. From the long exact sequence for the pair (Rm,Rm − {x}) and
the fact that H̃i(Rm) = 0, we obtain

Hi(Rm,Rm − {x}) ≃ H̃i(Rm − {x}) ≃ H̃i(S
m−1).

We conclude that H̃i(S
m−1) ≃ H̃i(S

n−1), hence m = n.

Corollary 3.37 (Brouwer fixed point theorem ). A continuous map f : Dn → Dn has a fixed
point.

Proof. Suppose that f(x) ̸= x for all x ∈ Dn. Define a map r : Dn → ∂Dn = Sn−1 by letting
r(x) to be the point where the ray going from f(x) to x intersects ∂Dn. Then r(x) = x for
x ∈ ∂Dn, hence ri = 1, where i : ∂Dn ↪→ Dn (r is a retraction). But this implies that

H̃n−1(∂D
n)→ H̃n−1(D

n)→ H̃n−1(∂D
n)

is an identity. However, H̃n−1(∂D
n) ≃ H̃n−1(S

n−1) ≃ Z while H̃n−1(D
n) = 0 as Dn is con-

tractible. This is a contradiction. □
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3.6. Equivalence of simplicial and singular homologies. Let (X,K) be a triangulated
space and CK(X) = C(K) be its simplicial chain complex. Every simplex σ : ∆n → X from
the triangulation can be considered as a singular n-simplex. Therefore we have an embedding
i : CK(X) ↪→ C(X) to the singular chain complex. It induces maps between homology groups

i∗ : H
K
n (X)→ Hn(X)

and we are going to prove that these maps are isomorphisms. This would imply that simplicial
homologies are independent of the triangulation and coincide with singular homologies.

More generally, assume that A ⊂ X is a union of simplices of the triangulation. Then we can
construct the simplicial chain complex of the pair (X,A)

CK(X,A) = CK(X)/CK(A)

and the corresponding homology groups HK
n (X,A). As before, there is a map i : CK(X,A)→

C(X,A) which induces a map between homology groups

i∗ : H
K
n (X,A)→ Hn(X,A)

and we want to show that these maps are isomorphisms.

Theorem 3.38. The homomorphisms HK
n (X,A)→ Hn(X,A) are isomorphisms for all n.

Proof. We will assume that A = ∅. Let X i ⊂ X be the i-skeleton of X consisting of simplices
of dimension ≤ i. Consider the following commutative diagram of exact sequences:

HK
n+1(X

i, X i−1) HK
n (X i−1) HK

n (X i) HK
n (X i, X i−1) HK

n−1(X
i−1)

Hn+1(X
i, X i−1) Hn(X

i−1) Hn(X
i) Hn(X

i, X i−1) Hn−1(X
i−1)

We can assume that the second and the fifth vertical maps are isomorphisms by induction on i.
Let us show that the forth (hence also the first) vertical map is an isomorphism. The group
of n-chains CK

n (X i, X i−1) is zero for n ̸= i, and is free abelian with the basis consisting of
n-simplices of X for n = i. Therefore the same is true for the homology groups HK

n (X i, X i−1).
Consider the characteristic maps Φα : ∆

i
α = ∆i → X for i-simplices of X, and the corresponding

map Φ:
⊔

α(∆
i
α, ∂∆

i
α)→ (X i, X i−1). It induces a homeomorphism⊔

α

∆i
α/

⊔
α

∂∆i
α → X i/X i−1,

hence isomorphisms of singular homology groups. But ∆i is homeomorphic to Di and ∂∆i is
homeomorphic to ∂Di = Si−1 and we know by Lemma 3.34

H̃n(D
i/Si−1) = H̃n(S

i) =

{
Z n = i,

0 n ̸= i.

By Theorem 3.32 we have Hn(X
i, X i−1) ≃ H̃n(X

i/X i−1). Hence we conclude that it is zero for
n ̸= i and is a free abelian group with a basis given by n-simplices of X for n = i. We conclude
that the forth vertical map is indeed an isomorphism. By the 5-lemma 2.14 the third vertical
map is also an isomorphism. □
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3.7. CW-complexes and cellular homology. Define an n-cell to be a space homeomorphic
to

◦
Dn. A CW-complex (or cell complex ) is a space X equipped with a decomposition into cells

(eα)α∈K such that, if Xn ⊂ X is the union of cells up to dimension n (called the n-skeleton),
then

(1) X0 is a discrete space.
(2) For every n-cell eα, there is a continuous map Φα : D

n → Xn which induces a homeo-
morphism

◦
Dn → eα and sends Sn−1 = ∂Dn to Xn−1.

Definition 3.39. A CW-decomposition of a space X is a chain

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ X

of spaces such that
(1) The space Xn is obtained from Xn−1 by attaching n-cells via attaching maps

ϕα : S
n−1
α → Xn−1,

meaning that Xn is the quotient space (Xn−1
∐

α D
n
α)/ ∼ under the identifications

ϕα(x) ∼ x for x ∈ Sn−1
α . The map Φα : D

n
α → Xn is called the characteristic map of the

n-cell enα = Φα(
◦
Dn

α). There is a commutative (pushout) diagram⊔
α S

n−1
α Xn−1

⊔
α D

n
α Xn

ϕ

Φ

(2) X =
⋃

n≥0X
n has the weak topology: U ⊂ X is open ⇐⇒ U ∩Xn ⊂ Xn is open ∀n.

The space X equipped with a CW-decomposition is called a CW-complex (or cell complex ).
The space Xn is called the n-skeleton of X. A space is called a CW-space if it has some
CW-decomposition.

Theorem 3.40. We have
(1) Hk(X

n, Xn−1) = 0 for k ̸= n and is free with a basis given by the n-cells if k = n.
(2) Hk(Xn) = 0 for k > n.
(3) The inclusion i : Xn ↪→ X induces isomorphisms i∗ : Hk(X

n)→ Hk(X) for k < n.

Proof. cl 1 We can identify Dn/Sn−1 with a pointed sphere Sn. The quotient Xn/Xn−1 can be
identified with (

∐
αD

n
α)/(

∐
α S

n−1
α ) ≃

∨
α S

n
α (wedge sum). We have H̃n(

∨
α S

n
α) ≃

⊕
α H̃n(S

n
α).

Therefore
Hn(X

n, Xn−1) ≃ H̃n(X
n/Xn−1) ≃

⊕
α

H̃n(S
n
α) ≃

⊕
α

Z.

cl 2 We have an exact sequence

Hk+1(X
n, Xn−1)→ Hk(X

n−1)→ Hk(X
n)→ Hk(X

n, Xn−1)

By the previous statement the first and the fourth components are zero for k > n. By induction
we can assume that Hk(X

n−1) = 0, hence we conclude that Hk(X
n) = 0.

cl 3 From the previous argument we obtain Hk(X
n−1) ≃ Hk(X

n) for k ≠ n, n− 1. Therefore
Hk(X

n) ≃ Hk(Xn+1) for k ̸= n, n+1 and in particular, for k < n. This implies Hk(X
n) ≃ Hk(X)

(if X is finite-dimensional). □

The long exact sequence for the pair (Xn, Xn−1) gives in particular

0→ Hn(X
n)

jn−→ Hn(X
n, Xn−1)

∂n−→ Hn−1(X
n−1)

pn−→ Hn−1(X
n)→ 0
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Let us organize these maps into a commutative diagram, with dn = jn−1∂n,

Hn(X
n) Hn−1(X

n−1)

. . . Hn+1(X
n+1, Xn) Hn(X

n, Xn−1) Hn−1(X
n−1, Xn−2) . . .

jn jn−1

dn+1

∂n+1

dn

∂n

Note that dndn+1 = 0 as ∂njn = 0. The above complex is called a cellular chain complex and its
homology groups are called cellular homology groups , denoted by HCW

n (X).

Theorem 3.41. We have HCW
n (X) ≃ Hn(X).

Proof. We have Ker dn = Ker ∂n ≃ Hn(X
n) as jn−1 is injective. Therefore

Ker dn/ Im dn+1 ≃ Hn(X
n)/ Im dn+1 = Hn(X

n)/ Im ∂n+1 ≃ Hn(X
n+1) ≃ Hn(X).

□

Recall that Hn(X
n, Xn−1) is a free abelian group with a basis given by n-cells enα. For any

such cell we have the attaching map Sn−1
α

ϕα−→ Xn−1 as well as the quotient map

Xn q−→ Xn/Xn−1 ≃
∨
α

(Dn
α/S

n−1
α )

qα−→ Dn
α/S

n−1
α ≃ Sn

α

Theorem 3.42. The differential dn : ZKn → ZKn−1 is given by dn(e
n
α) =

∑
β∈Kn−1

dαβe
n−1
β ,

where dαβ is the degree of the composition Sn−1
α → Xn−1 → Sn−1

β .
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4. Applications of Homology theory

4.1. Degree. Given a map f : Sn → Sn, consider the induced map

f∗ : Hn(S
n)→ Hn(S

n).

We know that Hn(S
n) ≃ Z, hence f∗ is of the form σ 7→ dσ for some d ∈ Z. This integer is

called the degree of f , denoted by deg f .

Proposition 4.1. We have
(1) deg 1 = 1.
(2) f ≃ g =⇒ deg f = deg g.
(3) deg fg = deg f · deg g.
(4) If f is a reflection with respect to some hyperplane in Rn+1, then deg f = −1.
(5) If f = −1, the antipodal map, then deg f = (−1)n+1.
(6) If f : Sn → Sn is not surjective, then deg f = 0.

Proof. (1) We have 1∗ = 1, the identity map Hn(S
n).

(2) If f ≃ g, then f∗ = g∗.
(3) (fg)∗ = f∗g∗.
(4) Let Sn−1 ⊂ Sn be fixed by the reflection. Consider a triangulation of Sn with two

hemispheres σ, τ as its n-simplices. Then Hn(S
n) has a generator σ − τ . The reflection

f interchanges σ and τ , hence f∗(σ − τ) = τ − σ. This means that deg f = −1.
(5) The antipodal map can be represented as a composition of n+1 reflections, each changing

the sign of one coordinate.
(6) If f is not surjective then it is a composition of Sn → Sn − {x} → Sn for some

x ∈ Sn − Im f . But Sn − {x} is contractible, hence f∗ : Hn(S
n)→ Hn(S

n) is zero.
□

Proposition 4.2. If f : Sn → Sn does not have fixed points, then deg f = (−1)n+1.

Proof. If f(x) ̸= x for all x ∈ Sn, then gt(x) = tf(x) − (1 − t)x ̸= 0 for t ∈ [0, 1]. Define
the homotopy ht : S

n → Sn, ht(x) = gt(x)/ ∥gt(x)∥ between h0 = −1 and h1 = f . Then
deg f = deg(−1) = (−1)n+1. □

In order to compute the degree of a map one introduces local degrees. Recall that if U ⊂ Rn

is open and x ∈ U , then

Hn(U,U − x) ≃ Hn(Rn,Rn − x) ≃ H̃n−1(Rn − x) ≃ H̃n−1(S
n−1) ≃ Z,

where the first isomorphism follows from excision, the second from the long exact sequence

H̃n(Rn)→ Hn(Rn,Rn − x)→ H̃n−1(Rn − x)→ H̃n−1(Rn)

and the third follows from the fact that Rn − x is homotopic to Sn−1.
Assume now that we have f : Sn → Sn and a point y ∈ Sn such that the preimage f−1(y)

consists of finitely many points x1, . . . , xm. We can choose disjoint neighborhoods U1, . . . , Um of
these points which are mapped to a neighborhood V of y. Then we obtain a homomorphism

f∗ : Z ≃ Hn(U,U − xi)→ Hn(V, V − y) ≃ Z

which is a multiplication by an integer, called the local degree of f at xi, denoted by deg f |xi
. Note

that if f maps Ui homeomorphically to V , then the above homomorphism is an isomorphism,
hence deg f |xi

= ±1.

Theorem 4.3. We have deg f =
∑

i deg f |xi
.
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Proof. Consider X = Sn, B =
⋃

i Ui and A = Sn − f−1(y). Then by excision Hn(X,A) ≃
Hn(B,A ∩B) and we have A ∩B =

⋃
i(Ui − xi). Therefore

Hn(S
n, Sn − f−1(y)) ≃

⊕
i

Hn(Ui, Ui − xi) ≃ Zm.

To prove the theorem we consider

Hn(Ui, Ui − xi) Hn(V, V − y) = Z

Hn(Sn, Sn − xi) Hn(S
n, Sn − f−1(y)) Hn(S

n, Sn − y) = Z

Hn(S
n) Hn(S

n) = Z

∼

f
(i)
∗

ji ∼

f ′
∗

∼ j

f∗

∼

and observe that j(1) =
∑

i ji(1). But this means that f∗(1) = deg f can be identified with
f ′
∗j(1) =

∑
i f

′
∗ji(1) or with

∑
i f

(i)
∗ (1) =

∑
i deg f |xi

. □

4.2. Hedgehog theorem. For any point x ∈ Sn ⊂ Rn+1, its tangent space TxS
n consists of

vectors in Rn+1 perpendicular to x. A (continuous) vector field is a continuous map f : Sn → Rn+1

such that f(x) ∈ TxS
n, a tangent vector at x ∈ Sn.

The following statement says that one can not comb a hairy ball without a cowlick:

Theorem 4.4 (Hedgehog theorem). There is no continuous tangent vector field on S2 that is
nowhere zero.

We can generalize this statement to any even dimension:

Theorem 4.5 (2.28). If n is even, there is no continuous tangent vector field on Sn that is
nowhere zero.

Proof. Let f : Sn → Rn+1 be a vector field. If f(x) ̸= 0 for all x, we can normalize it by taking
f(x)/ ∥f(x)∥, hence we can assume that f(x) ∈ Sn. The vectors x and f(x) are orthogonal to
each other in Rn+1 (the tangent space of Sn at x is orthogonal to x). The vectors

ht(x) = cos(t)x+ sin(t)f(x), t ∈ [0, π]

are contained in Sn. Therefore ht : S
n → Sn is a homotopy between h0(x) = 1 and h1 = −1

(the antipodal map). Therefore deg(−1) = deg 1, hence (−1)n+1 = 1. A contradiction as n is
even. □

Remark 4.6. Note that there is a non-vanishing vector field on S1. Indeed, represent S1 =

{z ∈ C | ∥z∥ = 1} and define f(z) = iz, which is orthogonal to z. In real coordinates this means
z = x1 + ix2 7→ −x2 + ix1, hence (x1, x2) 7→ (−x2, x1). More generally, for any odd n = 2k − 1,
consider the map

R2k ∋ x 7→ f(x) = (−x2, x1, . . . ,−x2k, x2k−1).

Then f(x) is orthogonal to x, hence f defines a non-vanishing vector field on Sn.

4.3. Jordan curve theorem.

Theorem 4.7 (Jordan curve theorem). A subspace of R2 homeomorphic to S1 separates R2

into two connected components.

We can consider S2 instead of R2 as one obtains R2 from S2 be removing a point and this
does not affect connectedness. The result then follows from a more general statement.
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Theorem 4.8. Given an embedding f : Sk → Sn with k < n, we have

H̃i(S
n − f(Sk)) =

{
Z i = n− k − 1,

0 otherwise.

Proof of Theorem 4.7. Taking k = 1 and n = 2, we obtain H̃0(S
2 − f(S1)) ≃ Z. Therefore

H0(S
2 − f(S1)) ≃ Z2, hence there are two connected components in the complement. □

Proof. If k = 0, then Sn − f(S0) ≃ Rn − {0} which is homotopic to Sn−1. But we know how to
compute H̃i(S

n). For the induction on k, write Sk as a union of hemispheres Dk
+, D

k
− intersecting

at Sk−1. Let A = Sn − f(Dk
+), B = Sn − f(Dk

−). Then

A ∩B = Sn − (f(Dk
+) ∪ f(Dk

−)) = Sn − f(Sk), A ∪B = Sn − f(Sk−1).

The spaces A,B have trivial reduced homologies by Theorem 4.9, hence by the Meyer-Vietoris
3.26 we have H̃i(A ∪B) ≃ H̃i−1(A ∩B). Therefore

H̃i−1(S
n − f(Sk)) ≃ H̃i(S

n − f(Sk−1))

and we apply induction. □

Theorem 4.9. Given an embedding f : Dk → Sn, we have H̃i(S
n − f(Dk)) = 0 for all i.

Proof. For k = 0, we have Sn − f(D0) ≃ Rn and the statement is obvious. Generally, we can
identify Dk with a cube Ik. Consider a decomposition Ik = I ′ ∪ I ′′, where I ′ = Ik−1 × [0, 1

2
] and

I ′′ = Ik−1 × [1
2
, 1]. Let A = Sn − f(I ′) and B = Sn − f(I ′′). Then

A ∪B = Sn − f(I ′ ∩ I ′′) = Sn − f(Ik−1), A ∩B = Sn − f(I ′ ∪ I ′′) = Sn − f(Ik).

By induction on k we have H̃i(S
n − f(Ik−1)) = 0, hence by the Meyer-Vietoris we have

H̃i(S
n − f(Ik)) ≃ H̃i(A)⊕ H̃i(B),

induced by the embeddings Sn − f(Ik)→ A and Sn − f(Ik)→ B. Assume there exists a chain
c ∈ Zi(S

n − f(Ik)) which is not in the boundary. Then its image in Zi(A) or Zi(B) is not in
the boundary. Continuing this process, we find a sequence of shrinking intervals

[0, 1] = I0 ⊃ I1 ⊃ I2 ⊃ . . .

such that c as a chain over Um = Sn − f(Ik−1 × Im) is not in the boundary, for all m.
We have U1 ⊂ U2 ⊂ . . . and U =

⋃
m Um = Sn − f(Ik−1 × {p}), where {p} =

⋂
m Im. Then

the chain c over U = Sn − f(Ik−1 × {p}) is in the boundary by induction. Let a ∈ Ci+1(U) be
such that c = da and let Z ⊂ U be its support. Then (Sn −Z)∪

⋃
m Um is an open cover of Sn,

hence it contains a finite subcover and we conclude that (Sn −Z)∪Um = Sn for some m. Then
Z ⊂ Um, hence a ∈ Ci+1(Um) and we conclude that c = da ∈ Bi(Um), a contradiction. □

Corollary 4.10. One cannot embed Sn in Rn.

Proof. Given such an embedding, we would get a non-surjective embedding f : Sn → Sn. Using
notation from the previous theorem, consider A = Sn− f(Dn

+) and B = Sn− f(Dn
−). Assuming

if A ∩B = Sn − f(Sn) ̸= ∅, then MV gives an exact sequence

H̃0(A)⊕ H̃0(B)→ H̃0(A ∪B) = H̃0(S
n − f(Sn−1))→ 0

But the left group is zero, while the right group is nonzero by the previous theorem. We conclude
that A ∩B = ∅, hence f(Sn) = Sn and f is sujrective, a contradiction. □
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4.4. Invariance of domain.

Theorem 4.11. Let U ⊂ Rn be open and f : U → Rn be injective continuous. Then f(U) is
open in Rn and f maps U homeomorphically onto f(U).

Proof. We can embed Rn ⊂ Sn using a one-point compactification and consider f : U → Sn.
It is enough to show that f(U) ⊂ Sn is open. Given a ∈ U , choose ε > 0 such that D =

{x ∈ Rn | ∥x− a∥ ≤ ε} ⊂ U . It suffices to show that f(D◦) is open. We have ∂D ≃ Sn−1

and by the previous results Sn − f(∂D) has two path-connected components. Note that
f(D− ∂D) is path-connected as D− ∂D is path connected, and Sn− f(D) is path-connected as
H̃0(S

n − f(D)) = 0 by the previous results. This means that these two sets are path-connected
components of Sn − f(∂D). Such components are closed, hence open as there are finitely many
of them. We conclude that f(D◦) = f(D − ∂D) is open. □

Definition 4.12. Define a topological n-manifold to be a Hausdorff space locally homeomorphic
to Rn (this means that every point has an open neighborhood homeomorphic to an open subset
U ⊂ Rn).

Corollary 4.13. If M,N are topological n-manifolds, M is compact and N is connected, then
any embedding f : M → N is a homeomorphism.

Proof. By the previous result f(M) is open. But it is also closed as M is compact. As N is
connected, we conclude that f(M) = N , hence f : M → N is a bijection. It is an open/closed
map, hence a homeomorphism. □

4.5. Algebraic applications.

Lemma 4.14. We have H1(RP n) ≃ Z2 for n ≥ 2. In particular, RP n ̸≃ Sn for n ≥ 2.

Proof. The space RP n ≃ (Rn+1\{0})/R∗ ≃ Sn/Z2 can be constructed as a quotient of Dn,
where we identify the antipodal points of ∂Dn = Sn−1. Under this identification we get
Sn−1/Z2 ≃ RP n−1. In this way we obtain RP n−1 ⊂ RP n such that

RP n/RP n−1 ≃ Dn/Sn−1 ≃ Sn.

Therefore we have a long exact sequence

· · · → H̃i+1(S
n)→ H̃i(RP n−1)→ H̃i(RP n)→ H̃i(S

n)→ . . .

This implies H̃1(RP n) ≃ H̃1(RP n−1) for n ≥ 3. Now we use the fact H1(RP 2) ≃ Z2. □

Theorem 4.15. The only finite field extensions of R are R and C.

Proof. Let K = Rn be equipped with a field structure. Let ∥x∥ denote the Euclidean norm of
x ∈ Rn. Consider a continuous map

f : Sn−1 → Sn−1, x 7→ x2/
∥∥x2

∥∥ .
If f(x) = f(y), then x2 = a2y2, where a2 = ∥x2∥ / ∥y2∥ ∈ R. Therefore (x − ay)(x + ay) = 0,
hence x = ±ay. As x, y ∈ Sn−1, we conclude that x = ±y. Therefore we get an injective
continuous map

f̄ : RP n−1 = Sn−1/{±1} → Sn−1.

By 4.13, f̄ is a homeomorphism. But this is not possible if n ≥ 3.
Let us show that for n = 2, we have K ≃ C. Let x ∈ K\R and x2 = a+2bx for some a, b ∈ R.

Then (x− b)2 = a+ b2. If a+ b2 ≥ 0, then x ∈ R, a contradiction. If a+ b2 = −c2 < 0, then
y = (x− b)/c satisfies y2 = −1, hence K ≃ C. □
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Remark 4.16. It was proved by Frobenius that the only finite-dimensional division algebras
over R (not necessarily commutative) are R, C and H (the algebra of quaternions).

Theorem 4.17 (Fundamental theorem of algebra). The field C is algebraically closed (every
non-constant polynomial has a root).

Proof. By the previous result every finite field extension of C coincides with C. But this implies
that C is algebraically closed: if f(x) is an irreducible polynomial, then K = C[x]/(f) is a field,
hence K = C and deg f = 1. Therefore f has a root. □

4.6. Borsuk-Ulam theorem. Let A ⊂ Rm and B ⊂ Rn be such that −A = A and −B = B.
We call a map f : A→ B odd if f(−x) = −f(x) for all x ∈ A.

Theorem 4.18. The following statements are equivalent (all maps are continuous)

(1) For any map f : Sn → Rn, there exists x ∈ Sn such that f(x) = f(−x).
(2) For any odd map f : Sn → Rn, there exists x ∈ Sn such that f(x) = 0.
(3) There does not exist an odd map f : Sn → Sn−1.
(4) There does not exist a map f : Dn → Sn−1 which is odd on the boundary Sn−1.
(5) An odd map f : Sn−1 → Sn−1 is not null homotopic.
(6) Let Sn = F1 ∪ · · · ∪ Fn+1 with closed Fi. Then at least one Fi has antipodal points.

Proof. (1) =⇒ (2). There exists x ∈ Sn with f(x) = f(−x). If f is antipodal, then f(−x) =
−f(x), hence f(x) = −f(x) and f(x) = 0.
(2) =⇒ (3). If f : Sn → Sn−1 ⊂ Rn is odd, then there exists x ∈ Sn with f(x) = 0, a
contradiction.
(3) =⇒ (4). Consider hemispheres Dn

± = {(x0, . . . , xn) ∈ Sn | ± x0 ≥ 0} and the projection
p : Dn

+ → Dn onto the last n coordinates which is a homeomorphism. If f : Dn → Sn−1 is odd
on the boundary, define a new map

g : Sn → Sn−1, g(x) =

{
fp(x) x ∈ Dn

+

−fp(−x) x ∈ Dn
−

Note that if x ∈ Sn−1 = Dn
+ ∩ Dn

−, then −fp(−x) = −f(−px) = f(px) as f is odd on the
boundary. This implies that g is well-defined and continuous. It is odd by definition and this
contradicts the assumption.
(4) =⇒ (5). If f is null homotopic, consider the corresponding homotopy h : Sn−1 × I → Sn−1.
It is constant on Sn−1 × {1}, hence factors through the cone

h̄ : CSn−1 = (Sn−1 × I)/(Sn−1 × {1})→ Sn−1.

But CSn−1 ≃ Dn with the boundary ∂Dn = Sn−1 × {0}. But f is odd on Sn−1, hence h̄ is odd
on the boundary. This contradicts our assumption.
(5) =⇒ (1). Assume that f : Sn → Rn is such that f(x) ̸= f(−x) for all x ∈ Sn. Then the map

g : Sn → Sn−1, x 7→ f(x)− f(−x)
∥f(x)− f(−x)∥

is antipodal. Its restriction g : Sn−1 → Sn−1 is odd and null homotopic (as it is defined on the
upper hemisphere of Sn), a contradiction.
(1) =⇒ (6). If some of the Fi are empty, we make them 1-point sets. Consider the map

f : Sn → Rn, . . . , x 7→ (d(x, F1), , d(x, Fn))
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using the Euclidean distance d. By assumption, there exists x ∈ Sn with f(x) = f(−x) = y. If
yi = 0, then d(x, Fi) = d(−x, Fi), hence x,−x ∈ Fi as Fi is compact. If yi ̸= 0 for all i, then
x,−x /∈

⋃n
i=1 Fi, hence x,−x ∈ Fn+1.

(6) =⇒ (3). Assume there exists an odd map f : Sn → Sn−1. There exists a closed covering
F1, . . . , Fn+1 of Sn−1 such that no Fi contains antipodal points. Indeed, consider a projection
of ∂∆n onto Sn−1 and take the images of the facets of ∂∆n (there are n + 1 facets). If
x,−x ∈ f−1(Fi), then −f(x) = f(−x) ∈ Fi, hence Fi contains antipodal points, a contradiction.
This means that the closed covering f−1(F1), . . . , f

−1(Fn+1 of Sn contradicts our assumption. □

Remark 4.19. In particular, if S2 is covered by 3 closed sets F1, F2, F3 then at least one of
them has antipodal points. The above proof shows that there exists a covering of S2 by 4 closed
sets such that neither of them has antipodal points.

We will prove that statement (5) of the above theorem is satisfied.

Theorem 4.20. If f : Sn → Sn is odd, then deg f is odd. In particular, f is not null homotopic.

Proof. Recall that f∗ : Hn(S
n)→ Hn(S

n) is a multiplication by deg f . Assuming that deg f is
even, we consider homology groups with coefficients in Z2 and obtain that the map

f∗ : Hn(S
n,Z2)→ Hn(S

n,Z2)

is zero. We will show that f∗ is actually an isomorphism. Let us write Hn(X) for Hn(X,Z2)

and Cn(X) for Cn(X,Z2) from now on.
Consider the projection p : Sn → P n = RPn which is a 2: 1 covering. As f : Sn → Sn is odd,

it induces f̄ : P n → P n such that f̄p = pf .

Sn Sn

P n P n

f

p p

f̄

For any simplex σ : ∆k → P n there exist exactly 2 lifts σ1, σ2 : ∆
k → Sn (as ∆k is simply-

connected). Considering chain complexes with coefficients in Z2, we have an exact sequence

0→ Ck(P
n)

τ−→ Ck(S
n)

p♯−→ Ck(P
n)→ 0

where τ(σ) = σ1 + σ2 (note that p♯(σ1 + σ2) = 2σ = 0 because of the coefficient ring Z2). The
above maps commute with differentials, hence there is a long exact sequence

0→ Hn(P
n)

τ∗−→∼ Hn(S
n)

p∗=0−−−→ Hn(Pn) −→∼ Hn−1(P
n)→ 0→ . . .

· · · → 0→ Hi(Pn) −→∼ Hi−1(P
n)→ 0→ . . .

· · · → 0→ H1(Pn) −→∼ H0(P
n)

0−→ H0(S
n) −→∼ H0(Pn)→ 0

To see that τ∗ : Hn(P
n,Z2) → Hn(S

n,Z2) is an isomorphism, we represent the generator of
Hn(S

n,Z) ≃ Z as σ1 − σ2, where σ1, σ2 are hemispheres in Sn. They both are mapped to the
same σ ∈ Hn(P

n,Z). Therefore τ∗ : Hn(P
n,Z2)→ Hn(S

n,Z2) is surjective. We also note that
Hi(S

n) = 0 for 0 < i < n. We conclude from the diagram that ∂ : Hi(P
n) → Hi−1(P

n) are
isomorphisms for 1 ≤ i ≤ n.
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Next we note that there is a commutative diagram

0 Ck(P
n) Ck(S

n) Ck(P
n) 0

0 Ck(P
n) Ck(S

n) Ck(P
n) 0

τ

f̄

p♯

f f̄

τ p♯

It induces a commutative diagram with long exact sequences as rows. In particular, we have

Hk(P
n) Hk(S

n) Hk(P
n) Hk−1(P

n)

Hk(P
n) Hk(S

n) Hk(P
n) Hk−1(P

n)

τ∗

f̄∗

p∗

f∗ f̄∗

∼

f̄∗

τ p∗ ∼

Starting with the fact that f̄∗ : H0(P
n)→ H0(Pn) is an isomorphism, we inductively prove that

f̄∗ : Hn(P
n)→ Hn(Pn) is an isomorphism. But then also f∗ : Hn(S

n)→ Hn(Sn). This is what
we wanted. □

4.7. Lefschetz fixed point theorem. Let X be a space such that all homology groups Hn(X,Q)

are finite-dimensional and only finitely many of them are non-zero. Given a continuous map
f : X → X, define the Lefschetz number

τ(f) =
∑
n

(−1)n tr(f∗ : Hn(X)→ Hn(X)).

Note that if f = 1 is the identity, then tr(1∗ : Hn(X)→ Hn(X)) = dimHn(X), hence

τ(1) =
∑
n

(−1)n dimHn(X) = χ(X),

the Euler number of X.

Theorem 4.21. If X is a finite simplicial complex and f : X → X satisfies τ(f) ̸= 0, then f

has a fixed point.

Proof. Assume that f : X → X does not have fixed points. We use without a proof the fact
that in this case there exists a subdivision L of X, a subdivision K of L and a simplicial map
g : K → L homotopic to f such that g(σ)∩ σ = ∅ for all σ (we mix abstract simplices and their
geometric realizations here). Let Kn ⊂ |K| = X and Ln ⊂ |L| = X be the n-skeletons. Then
Ln ⊂ Kn as K is a subdivision of L. Therefore g(Kn) ⊂ Kn (we use the geometric realization
of g here). It induces the chain map of the cellular chain complex Cn = Hn(K

n, Kn−1). Then

τ(g) =
∑
n

(−1)n tr(g∗ : Cn → Cn).

But the map g∗ : Hn(K
n, Kn−1) → Hn(K

n, Kn−1) has trace zero since Hn(K
n, Kn−1) has a

basis consisting of n-simplices and g(σ) ∩ σ = ∅ by our assumption. We conclude that
τ(f) = τ(g) = 0. □

Corollary 4.22 (Brouwer fixed point theorem 3.37). A continuous map f : Dn → Dn has a
fixed point.

Proof. The space Dn is homotopic to a point, hence f is homotopic to the identity map.
Therefore τ(f) = χ(Dn) = 1 ̸= 0, hence f has a fixed point. □

Lemma 4.23. Given a map f : Sn → Sn, we have τ(f) = 1 + (−1)n deg f .
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Appendix A. Preliminaries

A.1. Relations.

Definition A.1. Let X be a set.

(1) A (binary) relation on X is a subset R ⊂ X ×X. We write xRy if (x, y) ∈ R.
(2) A relation ∼ on X is called an equivalence relation if we have

(1) x ∼ x (reflexivity).
(2) x ∼ y =⇒ y ∼ x (symmetry).
(3) x ∼ y, y ∼ z =⇒ x ∼ z (transitivity).

(3) A relation ≤ on X is called a partial order if we have
(1) x ≤ x (reflexivity).
(2) x ≤ y, y ≤ x =⇒ x = y (anti-symmetry).
(3) x ≤ y, y ≤ z =⇒ x ≤ z (transitivity).

A set X equipped with a partial order is called a poset (partially ordered set). We write
x < y if x ≤ y and x ̸= y.

(4) A poset X is called a chain (or a totally ordered set) if for any x, y ∈ X we have x ≤ y

or y ≤ x.
(5) A map f : X → Y between posets is called order-preserving (or monotone) if

x ≤ y =⇒ f(x) ≤ f(y).

It is called (strictly) increasing (or strictly monotone) if

x < y =⇒ f(x) < f(y).

By an increasing map we will usually mean a strictly increasing map.

Definition A.2. Given an equivalence relation ∼ on X, we define an equivalence class of x ∈ X

to be [x] = {y ∈ X | y ∼ x}. The set of all equivalence classes of X is denoted by X/∼, called
the quotient set of X by ∼.

Example A.3. Let X = [0, 1] and let x ∼ y if x = y or {x, y} = {0, 1}. Then X/∼ is a circle.

Example A.4. Let G be a group acting on a set X, that is, we have a map (called an action)

G×X → X, (g, x) 7→ gx

such that g(hx) = (gh)x and ex = x for g, h ∈ G, x ∈ X and the identity e ∈ G. Define
an equivalence relation on X to be x ∼ y if y = gx for some g ∈ G. The equivalence classes
[x] = {gx | g ∈ G} = Gx are called orbits . The quotient set X/∼ is denoted by X/G, called the
orbit space.

Definition A.5. Given a relation R ⊂ X × X, define the equivalence relation generated by
R to be the minimal equivalence relation ∼ that contains R (the intersection of equivalence
relations that contain R). We have x ∼ y ⇐⇒ there exist elements x0, . . . , xn with x0 = x,
xn = y and xi−1Rxi or xiRxi−1 for 1 ≤ i ≤ n. The quotient set X/∼ is also denoted by X/R.

Remark A.6. Similarly, we can define a partial order generated by a relation R ⊂ X × X.
For its existence we require that whenever x0Rx1R . . . RxnRx0, we have x0 = x1 = · · · = xn (so
that anti-symmetry is satisfied).

Example A.7. Given A ⊂ X, let X/A denote the quotient set X/(a ∼ b : a, b ∈ A). It can be
decomposed as X/A = (X − A) ∪ {∗}, where ∗ is the equivalence class of all elements in A.
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Example A.8. For example, let Dn = {x ∈ Rn | ∥x∥ ≤ 1} and Sn−1 = {x ∈ Rn | ∥x∥ = 1}.
Then Sn−1 ⊂ Dn and Dn/Sn−1 ≃ Sn. In particular, S0 = {±1} ⊂ D1 = [−1, 1] and we have
D1/S0 = [−1, 1]/{±1} ≃ S1. Similarly D2/S1 ≃ S2.

A.2. Quotient topology. By a space we always mean a topological space.

Definition A.9. Let X be a set and τ, τ ′ ⊂ 2X be two topologies on X. If τ ⊂ τ ′, then τ is
called weaker (coarser, smaller) than τ ′, and τ ′ is called stronger (finer, larger) than τ .

Definition A.10. Let X be a space and f : X → Y be a surjective map onto a set Y . Define
the quotient topology on Y with respect to f to be

τ =
{
U ⊂ Y

∣∣ f−1(U) is open in X
}
.

It is the strongest topology on Y such that f : X → Y is continuous. The space Y equipped
with the quotient topology is called the quotient space. A surjective map f : X → Y between
spaces is called the quotient map if Y has the quotient topology.

Lemma A.11. Let f : X → Y be a quotient map between spaces. Then a map g : Y → Z into
a space Z is continuous ⇐⇒ gf is continuous.

Example A.12. If X is a topological space equipped with an equivalence relation ∼, then
we equip X/∼ with the quotient topology with respect to the projection p : X → X/∼. In
particular, if A ⊂ X is a subspace, then we equip X/A with the quotient topology.

Example A.13. Let f : A→ X and g : A→ Y be two continuous maps. Define their pushout
to be the quotient space

X ⊔A Y = X ⊔ Y/(f(a) ∼ g(a) : a ∈ A).

The maps i1 : X → X ⊔A Y and i2 : Y → X ⊔A Y have the following universal property. If
continuous j1 : X → Z and j2 : Y → Z satisfy j1f = j2g, then there exists a unique continuous
u : X ⊔A Y → Z making the following diagram commute

A Y

X X ⊔A Y

Z

g

f i2 j2
i1

j1

u

Example A.14. In particular, let A ⊂ Y be a subspace and ϕ : A→ X be a continuous map.
We consider the inclusion map i : A→ Y and the corresponding pushout

X ∪ϕ Y = X ⊔ Y/(ϕ(a) ∼ a : a ∈ A),

called the adjunction space (or attaching space) obtained by attaching Y to X via ϕ

A X

Y X ∪ϕ Y

ϕ

i j

Φ

There is a decomposition X ∪ϕ Y = X ⊔ (Y − A). The map ϕ is called the attaching map. The
map Φ is called the characteristic map.
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Figure 1. Cone, mapping cylinder and mapping cone.

Example A.15. Given a space X, define its cone to be the quotient space (I = [0, 1])

CX =
X × I

X × {0}
.

Example A.16. Given a continuous map f : X → Y , define its mapping cylinder to be the
quotient space

Mf =
X × I ⊔ Y

(x, 1) ∼ f(x)
.

Define its mapping cone to be the quotient space

Cf =
CX ⊔ Y

(x, 1) ∼ f(x)
= Mf/X × {0}.

Definition A.17. Define a pointed space (X, x0) to be a pair consisting of a space X and a
distinguished point x0 ∈ X. Define the wedge sum of pointed spaces (X, x0) and (Y, y0) to be
the quotient space

X ∨ Y = X ⊔ Y/(x0 ∼ y0)

with the distinguished point [x0] = [y0].

Remark A.18. Note that if A ⊂ X is a subspace, then X/A has a distinguished point – the
equivalence class of points in A.

Remark A.19. The wedge sum can be interpreted as a coproduct in the category of pointed
spaces.

Definition A.20. Let (Xi)i∈I be a family of spaces, X =
∏

i Xi and let pi : X → Xi be
projections. The product topology on X is the weakest topology that contains sets p−1

i (U) for
open U ⊂ Xi. This topology consists of (arbitrary) unions of sets⋂

i∈J

p−1
i (Ui) =

∏
i∈J

Ui ×
∏
i∈I\J

Xi,

where J ⊂ I is finite and Ui ⊂ Xi is open, for i ∈ J .

Lemma A.21. The product topology on X =
∏

i Xi is the weakest topology such that pi : X → Xi

are continuous. For any family of continuous maps fi : Z → Xi, there exists a unique continuous
map f : Z → X such that pif = fi, for all i

Z
∏

i∈I Xi Xi.
f

fi
pi
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Appendix B. Categories and functors

Definition B.1. A category A consists of the following data
(1) A family ObA, whose elements are called objects of A.
(2) For all objects X, Y of A, a set Hom(X, Y ) = HomA(X, Y ), whose elements are called

morphisms from X to Y .
(3) For all objects X, Y, Z of A, a map

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z), (f, g) 7→ g ◦ f,

called the composition map.
This data should satisfy

(1) ∀X ∈ ObA, ∃1X ∈ Hom(X,X) s.t. 1Y ◦ f = f ◦ 1X = f for any f ∈ Hom(X, Y ).
(2) The composition of morphisms is associative.

Remark B.2.
(1) The element 1X is unique for every X ∈ ObA.
(2) We write f : X → Y for f ∈ Hom(X, Y ).
(3) A morphism f : X → Y is called an isomorphism if ∃g : Y → X such that gf = 1X and

fg = 1Y .

Example B.3.
(1) The category ModA of modules over a ring A and homomorphisms between them.
(2) The category Set of sets and all maps between them.
(3) The category Top of topological spaces and continuous maps between them.
(4) The category Com of commutative rings and ring homomorphisms.
(5) The category Grp of groups and group homomorphisms.
(6) The category A• of abelian groups and group homomorphisms. It can be identified with

ModZ.

Definition B.4. Let A and B be two categories. A (covariant) functor F from A to B consists
of the following data

(1) A map F : Ob(A)→ Ob(B).
(2) A map F : HomA(X, Y )→ HomB(FX,FY ) for all objects X, Y ∈ Ob(A).

This data should satisfy
(1) F (1X) = 1FX for all X ∈ Ob(A).
(2) F (g ◦ f) = F (g) ◦ F (f).

Definition B.5.
(1) Given a category A, we define the opposite category Aop using the data

Ob(Aop) = Ob(A), HomAop(X, Y ) = HomA(Y,X).

(2) A functor from Aop to B is called a contravariant functor from A to B.

Example B.6.
(1) Given a category A and an object X, there is a (covariant) functor

Hom(X,−) : A→ Set, Y 7→ Hom(X, Y ).

There is also a contravariant functor

Hom(−, X) : A→ Set, Y 7→ Hom(Y,X).
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(2) For the category ModA and an A-module M , we have similar functors Hom(M,−) and
Hom(−,M) from ModA to ModA.

(3) For any A-module N , there is a functor

−⊗N : ModA→ ModA, M 7→M ⊗N.

Definition B.7. Let F, G be two functors from A to B. A morphism (or natural transformation)
ϕ from F to G consists of the data

(1) Morphism ϕX : FX → GX for every object X ∈ Ob(B)

such that for every f ∈ HomA(X, Y ) the following diagram commutes

FX FY

GX GY

F (f)

ϕX ϕY

G(f)

Definition B.8. Let f : A→ B be a ring homomorphism.
(1) Given a B-module M , we can consider it as an A-module by setting ax = f(a)x for

a ∈ A, x ∈M . In this way we obtain a functor ModB → ModA, called a restriction of
scalars .

(2) Given an A-module M , we consider a B-module

MB = B ⊗A M, b(b′ ⊗ x) = bb′ ⊗ x, b, b′ ∈ B, x ∈M.

In this way we obtain a functor B ⊗A − : ModA → ModB, called an extension of
scalars .

Definition B.9. Two functors F : A→ B, G : B→ A are called adjoint if there exist natural
bijections

HomB(F (X), Y ) ≃ HomA(X,G(Y )) ∀ X ∈ Ob(A), Y ∈ Ob(B).

In this case F is called a left adjoint functor to G and G is called a right adjoint functor to F .

Example B.10. There is a Tensor-Hom adjunction

Hom(L⊗M,N) ≃ Hom(L,Hom(M,N)).

for A-modules L,M,N . It implies that the functors

F : ModA→ ModA, L 7→ L⊗M,

G : ModA→ ModA, N 7→ Hom(M,N)

are adjoint.
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Appendix C. Simplicial approximation

A simplicial map f : K → L between two simplicial complexes is a map f : K0 → L0 such
that, for every simplex σ ∈ K (which is a subset of K0), the set f(σ) ⊂ L0 is a simplex in L.
Such map induces a continuous map |f | : |K| → |L| between geometric realizations.

Recall, that for every simplicial complex K, we have its barycentric subdivision N(K)

which consists of all finite non-empty chains of simplices in K. There is a homeomorphism
|N(K)| → |K|.

Definition C.1. A simplicial approximation of a map F : |K| → |L| is a simplicial map
f : K → L such that, for every simplex τ ∈ L,

x ∈ |K| , F (x) ∈ ∆(τ) =⇒ |f | (x) ∈ ∆(τ).

Lemma C.2. The above definition is equivalent to the requirement that, for every v ∈ K0,

F

(⋃
σ∋v

◦
∆(σ)

)
⊂

⋃
τ∋f(v)

◦
∆(τ)

Proof. Assume that f is a simplicial approximation of F . Let x ∈
◦
∆(σ) for some σ ∋ v. Then

τ = f(σ) is a simplex in L and |f | (x) ∈
◦
∆(τ). By assumption, if F (x) ∈

◦
∆(τ ′) (there always

exists such simplex), then |f | (x) ∈ ∆(τ ′), hence τ ⊂ τ ′. But f(v) ∈ τ , hence f(v) ∈ τ ′.
Conversely, we can assume that F (x) ∈

◦
∆(τ) and we need to show that |f | (x) ∈ ∆(τ). Let

x ∈
◦
∆(σ) for some σ ∈ K. By assumption, for every v ∈ σ, we have F (x) ∈

◦
∆(τ ′) for some

τ ′ ∋ f(v). But such simplex is unique and we get τ ′ = τ , hence f(v) ∈ τ . We conclude that
f(σ) ⊂ τ , hence |f | (x) ∈ |f | (∆(σ)) ⊂ ∆(τ).

□

Proposition C.3. If f : K → L is a simplicial approximation to F : |K| → |L|, then |f | is
homotopic to F .

Theorem C.4 (Simplicial approximation). For any continuous map F : |K| → |L|, there exists
r ≥ 1 and a simplicial approximation f : N r(K)→ L to F .
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