Numerical Methods
5633

Lecture 2
Michaelmas Term 2018

Marina Krstic Marinkovic
mmarina@maths.tcd.ie

School of Mathematics
Trinity College Dublin

Marina Krstic Marinkovic 1/ 17 5633-Numerical Methods

mailto:marina.marinkovic@cern.ch?subject=

Organisational (Michaelmas Term 2018)

@ No MA5533 lecture next week: 26.09.2018 (MA5513 class
instead)

® Changed time of the lecture, as of next week

To appear Submission DL
® Assignment 1 10.10 2.11
® Assignment 2 14.11 30.11

Marina Krstic Marinkovic 2/ 17 5633-Numerical Methods

Computational Errors

® A numerical method must use a finite representation for numbers and

thus cannot possibly produce an exact answer for all problems

= For example, 3.14159 instead of m etc. (also V2,2/3 etc.)
® Sources of error:

= Truncation error (approximate formulas, including discret. error)

= Roundoff error (inexact computer arithmetics)

= Propagated error (errors from input, or previous calc.)

= Statistical error (stochastic calc.: Monte Carlo; sampling)

® References for this lecture:
= David Bindel, Jonathan Goodman “Principles of Scientific

Computing Sources of Error”, Chapter “Sources of Error”

= Most of the material taken from: http://cims.nyu.edu/~donev/
Teaching/NMI-Fall2010/Lecturel.handout.pdf

= https://cran.r-project.org/doc/manuals/R-intro.pdf

Marina Krstic Marinkovic 3/ 17 5633-Numerical Methods

http://www.cs.nyu.edu/courses/spring09/G22.2112-001/book/SourcesOfError.chapter.pdf
https://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf
https://cran.r-project.org/doc/manuals/R-intro.pdf

Error propagation and amplification

® Errors can grow as they propagate through a computation, e.q.

f1 .3 // approx of f(x)
f2 = . . . ; // approx of f(x+h)
fPrimeHat = (f2 - f1) / h ; // approx of derivative

@ Three contributions to the error:

+ h) —)
= Truncation error: S })L /@) = f1(2)(1 + €4r)
= Roundoff error: Fr= J2 ; Ji (14 €.).

= Propagated error (using inexact values of f(x) and f(x+h) in
the first place): o h

R OF ROy DR

h h fy— f1 - h (1 + €pr)

Marina Krstic Marinkovic 4 / 17 5633-Numerical Methods

Consistency, Stability and Convergence

N\ N

@Discretisation error: }Wprd):::O — fﬂzCﬁnJ(L%):::O

= replacing the computational problem with an easier-to-solve
approximation

= for each n there is an algorithm that produces Ip given(jn

@A numerical method is:

= consistent - if the approximation error vanishes as 7l — OO
= stable - i1f propagated errors decrease as the computation progresses
= convergent - if the numerical error can be made arbitrarily small by

increasing the computational effort

® Other very important features, determining the choice of NM: accuracy,
reliability/robustness, efficiency

Marina Krstic Marinkovic 5 / 17 5633-Numerical Methods

Conditioning a Computational Problem

@ A generic computational problem:
= Find solution x that satisfies a condition F(x,d)=0,for given data d

@ Well posed problem has a unique solution that depends continuously on
the data. Otherwise:ill-posed problem (no numerical method will work!)

@ Conditioning number (K): Sr T
K = sup 10211/l
sao|[0d|| / ||d]

= absolute error: aAj i 533

= relative error: T = (1 T 6).513

@ K is an important intrinsic property of a computational problem.
@© K~1, problem is well-conditioned.

@ Ill-conditioned problem: a given target accuracy of the solution o
cannot be computed for a given accuracy of the data od , l.e.
condition number K 1is large!

Marina Krstic Marinkovic 6 / 17 5633-Numerical Methods

More on Stability:

@ Stability analysis in scientific computing: studying the propagation of small
changes by a process, to search for error growth in computations

= focuses on propagated error only (for simplicity)

@A numerical method is:
= stable - if propagated errors decrease as the computation progresses

= unstable - if relative errors in the output are much larger than relative
errors in the input (ill-conditioned —> unstable)

= backward stable algorithm - as stable as the condition number allows/
unstable only when the underlying problem is ill-conditioned (many Lin.Alg.
algorithms)

= forward stable algorithm - if it has a forward error (Jx) of magnitude
similar to some backward stable algorithm (0x/K is small)

= mixed stability: combines the forward error(&f and the backward error 0d ;
if there exists O0d such that both 0d and 517 are small

Marina Krstic Marinkovic 7/ 17 5633-Numerical Methods

IEEE 754

® Computers represent everything using bit strings, i.e.,

integers in base-2. Integers can thus be exactly represented.
But not real numbers!

@ IEEE Standard for floating-point arithmetic (est. 1985):

= Formats for representing and encoding real numbers using bit strings
(single and double precision)

= Rounding algorithms for performing accurate arithmetic operations (e.g.
addition,subtraction,division,multiplication) and conversions (e.g. single
to double precision)

= Exception handling for special situations (e.g. division by zero and
overflow)

* R programming:

Some info on the implementation of the IEEE 754 standard in R:

https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html

Marina Krstic Marinkovic 8 / 17 5633-Numerical Methods

https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html

Floating Point Representation

® Assume we have a computer that represents numbers using a given (decimal) number system
® Representing real numbers, with N available digits:

= Fixed-point representation:

- Problem with representing large/small numbers: 9.872 but 0.009

= Floating-point representation:

1 -2
— Similar to the common scientific representation: 0.9872-10 and 0.9872-10

@ A floating-point number in base P is represented using:
= one sign bit s = 0 or 1 (positive or negative nr.)
= integer exponent giving its order of magnitude

= t-digit integer mantissa specifying actual digits of the number

Marina Krstic Marinkovic 9 / 17 5633-Numerical Methods

IEEE Standard Representations

@ IEEE representation example (single precision example):

Take the number x = 2752 = 0.2752 - 104

1. Converting 2752 to the binary:
r=2" 424274+ 25 = (101011000000), = 2! - (1.01011),

= (—1)"2"87 127 (1.01011)5 = (—1)02010001010027127 . (1 01011),

2. On the computer: 1:::(?—])S<'2p_127"(13f)2

——

r=s|p| f]
= [0 | 100,0101,0 | 010, 1100, 0000, 0000, 0000, 0000]
= (452¢0000) 16

@ IEEE non-normalised numbers

value power p fraction f
+0 0 0
denormal (subnormal) 0 >0
+oo(inf) 255 0
Not a number (NaN) 255 >0

Marina Krstic Marinkovic 10 / 17 5633-Numerical Methods

IEEE Standard Representations

@ Representation of single(a) and double(b) precision numbers:

sign exponent (8-bit) fraction (23-bit)
] | |

olol1]1|1]|1]1|lololof1|0]|O|lO|O]|O|OfO|O|O[O|O|O|O|O]|O|O(O]|O|O(O]|O]| =0.15625 (a)

O O o
31 23 0
exponent fraction

sign (11 bit) (52 bit)

| Il

(b)

O @) @)

63 52 0

[Illustrations: By Codekaizen -

Own work, GFDL, https://commons.wikimedia.orq/w/index.php?curid=3595583]

@ See wikipedia article on IEEE:
https://en.wikipedia.orqg/wiki/IEEE 754-1985

Marina Krstic Marinkovic 11 / 17 5633-Numerical Methods

https://en.wikipedia.org/wiki/IEEE_754-1985
https://commons.wikimedia.org/w/index.php?curid=3595583

IEEE Standard Representations

@ R-script for conversion of integer to binary

function for converting integer to binary numbers

binary<-function(p_number)

{

bsum<-0

bexp<-1

while (p_number > 0) {

digit<—-p_number %% 2

p_number<-floor(p_number / 2) #predefined math function floor
#floor(x) gives [x]

bsum<-bsum + digit * bexp

bexp<—bexp * 10

s

return(bsum)

}

p_number<-readline("Decimal number: ") #reading a number decimal representation
p_number<—-as.numeric(p_number) #converts the input to integer
bsum<-binary(p_number) #calls function to perform conversion to binary

cat("Binary: ", bsum) #prints binary number

> source(“binary.sh”)
Decimal number: 2752
Binary: 1.0101lle+11>

Marina Krstic Marinkovic 12 / 17 5633-Numerical Methods

Important Facts about Floating-Point

@ Not all real numbers x, or even integers, can be represented
exactly as a floating-point number, instead, they must be rounded
to the nearest floating point number

® The relative spacing or gap between a floating-point x and the
nearest other one is at most € = 2%, sometimes called ulp (unit
of least precision). In particular, 1 + € is the first floating-
point number larger than 1

@ Floating-point numbers have a relative rounding error that 1is
smaller than the machine precision or roundoff-unit u. The rule
of thumb is that single precision gives 7-8 digits of precision
and double 16 digits

@ Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics!

Marina Krstic Marinkovic 13 / 17 5633-Numerical Methods

Floating-Point Exceptions

® Computing with floating point values may lead to

exceptions, which may be trapped and halt the program:

e Divide-by-zero, the result is oo
e Invalid if the result is a NaN

e Overflow if the result is too large to be represented
e Underflow if the result is too small to be represented

® Numerical software needs to be careful about avoiding
exceptions where possible

= Do not compare floating point numbers (especially
for loop termination), or more generally, do not
rely on logic from pure mathematics!

Marina Krstic Marinkovic 14 / 17 5633-Numerical Methods

Numerical Cancellation

@ If x and y are close to each other, x - y can have reduced
accuracy due to cancellation of digits.

® Note: If gradual underflow is not supported x — y can be zero
even if x and y are not exactly equal

@ Benign cancellation: subtracting two exactly-known IEEE numbers
results in a relative error of no more than an ulp. The result

1s precise

® Catastrophic cancellation occurs when subtracting two nearly
equal inexact numbers and leads to loss of accuracy and a large

relative error in the result

® For example, 1.1234 - 1.1223 = 0.0011 which only has 2
significant digits instead of 4. The result is not accurate

Marina Krstic Marinkovic 15 / 17 5633-Numerical Methods

Avoiding Cancellation

® Rewriting in mathematically-equivalent but numerically-
preferred form is the first try

= For example 0

erd=ve — s

= to avoid catastrophic cancellation. But what about the extra
cost?

® Sometimes one can use Taylor series or other approximation to
get an approximate but stable result

Vo +6—Vrr

—— for 0K
\/_

Marina Krstic Marinkovic 16 / 17 5633-Numerical Methods

Summary

® A numerical method needs to control the various computational
errors (approximation, roundoff ..) while balancing computational
cost

@ The IEEE standard (attempts to) standardises the single and
double precision floating-point formats, their arithmetic, and
exceptions. It is widely implemented (R, Matlab, C, ..)

@ Numerical overflow, underflow and cancellation need to be
carefully considered and may be avoided

@ Mathematically-equivalent forms are not numerically-equivalent
® Never compare floating point numbers! Especially for loop
termination, or more generally, do not rely on logic from pure

mathematics

® Some disastrous things might happen due to applying numerical
methods in an incorrect way

Marina Krstic Marinkovic 17 / 17 5633-Numerical Methods

https://www.ima.umn.edu/~arnold/disasters/

