
Marina Krstic Marinkovic / 17 5633-Numerical Methods

School of Mathematics
Trinity College Dublin

Marina Krstic Marinkovic
mmarina@maths.tcd.ie

Numerical Methods
5633

School of Mathematics
Trinity College Dublin

Lecture 2

1

Michaelmas Term 2018

mailto:marina.marinkovic@cern.ch?subject=

Organisational (Michaelmas Term 2018)

๏ No MA5533 lecture next week: 26.09.2018 (MA5513 class
instead)

๏ Changed time of the lecture, as of next week

To appear Submission DL

๏ Assignment 1 10.10 2.11

๏ Assignment 2 14.11 30.11

2Marina Krstic Marinkovic / 17 5633-Numerical Methods

Computational Errors

๏ A numerical method must use a finite representation for numbers and
thus cannot possibly produce an exact answer for all problems

➡ For example, 3.14159 instead of π etc. (also √2,2/3 etc.)

๏ Sources of error:

➡ Truncation error (approximate formulas, including discret. error)

➡ Roundoff error (inexact computer arithmetics)

➡ Propagated error (errors from input, or previous calc.)

➡ Statistical error (stochastic calc.: Monte Carlo; sampling)

๏ References for this lecture:
➡ David Bindel, Jonathan Goodman “Principles of Scientific

Computing Sources of Error”, Chapter “Sources of Error”
➡ Most of the material taken from: http://cims.nyu.edu/~donev/

Teaching/NMI-Fall2010/Lecture1.handout.pdf
➡ https://cran.r-project.org/doc/manuals/R-intro.pdf

3Marina Krstic Marinkovic / 17 5633-Numerical Methods

http://www.cs.nyu.edu/courses/spring09/G22.2112-001/book/SourcesOfError.chapter.pdf
https://cran.r-project.org/doc/contrib/Seefeld_StatsRBio.pdf
https://cran.r-project.org/doc/manuals/R-intro.pdf

๏ Errors can grow as they propagate through a computation, e.g.

๏ Three contributions to the error:

➡ Truncation error:

➡ Roundoff error:

➡ Propagated error (using inexact values of f(x) and f(x+h) in
the first place):

Error propagation and amplification

4

n 10 100 104 106 106

b
A .603 .518 .511 .5004 .4991

error .103 1.8⇥ 10�2 1.1⇥ 10�2 4.4⇥ 10�4 �8.7⇥ 10�4

Figure 4: Statistical errors in a demonstration Monte Carlo computation.

5 Statistical error in Monte Carlo

Monte Carlo means using random numbers as a computational tool. For ex-
ample, suppose6

A = E[X], where X is a random variable with some known
distribution. Sampling X means using the computer random number generator
to create independent random variables X

1

, X

2

, . . ., each with the distribution
of X. The simple Monte Carlo method would be to generate n such samples
and calculate the sample mean:

A ⇡ b
A =

1
n

nX

k=1

X

k

.

The di↵erence between b
A and A is statistical error. A theorem in probability,

the law of large numbers, implies that b
A! A as n!1. Monte Carlo statistical

errors typically are larger than roundo↵ or truncation errors. This makes Monte
Carlo a method of last resort, to be used only when other methods are not
practical.

Figure 4 illustrates the behavior of this Monte Carlo method for the random
variable X = 3

2

U

2 with U uniformly distributed in the interval [0, 1]. The exact
answer is A = E[X] = 3

2

E[U2] = .5. The value n = 106 is repeated to illustrate
the fact that statistical error is random (see Chapter ?? for a clarification of
this). The errors even with a million samples are much larger than those in the
right columns of Figures 3 and 3.

6 Error propagation and amplification

Errors can grow as they propagate through a computation. For example, con-
sider the divided di↵erence (6):

f1 = . . . ; // approx of f(x)
f2 = . . . ; // approx of f(x+h)
fPrimeHat = (f2 - f1) / h ; // approx of derivative

There are three contributions to the final error in f

0:

b
f

0 = f

0(x)(1 + ✏

pr

)(1 + ✏

tr

)(1 + ✏

r

) ⇡ f

0(x)(1 + ✏

pr

+ ✏

tr

+ ✏

r

). (7)
6
E[X] is the expected value of X. Chapter ?? has some review of probability.

11

It is unlikely that f

1

= d
f(x) ⇡ f(x) is exact. Many factors may contribute to

the errors e

1

= f

1

� f(x) and e

2

= f

2

� f(x + h), including inaccurate x values
and roundo↵ in the code to evaluate f . The propagated error comes from using
inexact values of f(x + h) and f(x):

f

2

� f

1

h

=
f(x + h)� f(x)

h

✓
1 +

e

2

� e

1

f

2

� f

1

◆
=

f(x + h)� f(x)
h

(1 + ✏

pr

) . (8)

The truncation error in the di↵erence quotient approximation is

f(x + h)� f(x)
h

= f

0(x)(1 + ✏

tr

). (9)

Finally, there is roundo↵ error in evaluating (f2 - f1) / h:

b
f

0 =
f

2

� f

1

h

(1 + ✏

r

). (10)

If we multiply the errors from (8)–(10) and simplify, we get (7).
Most of the error in this calculation comes from truncation error and prop-

agated error. The subtraction and the division in the evaluation of the divided
di↵erence each have relative error of at most ✏

mach

; thus, the roundo↵ error ✏

r

is at most about 2✏

mach

, which is relatively small7. We noted in Section 3 that
truncation error is roughly proportional to h. The propagated error ✏

pr

in the
outputs is roughly proportional to the absolute input errors e

1

and e

2

amplified

by a factor of h

�1:
✏

pr

=
e

2

� e

1

f

2

� f

1

⇡ e

2

� e

1

f

0(x)h
.

Even if ✏

1

= e

1

/f(x) and ✏

2

= e

2

/f(x+h) are small, ✏

pr

may be quite large.
This increase in relative error by a large factor in one step is another example
of catastrophic cancellation, which we described in Section 1. If the numbers
f(x) and f(x + h) are nearly equal, the di↵erence can have much less relative
accuracy than the numbers themselves. More subtle is gradual error growth over
many steps. Exercise 15 has an example in which the error roughly doubles at
each stage. Starting from double precision roundo↵ level, the error after 30
steps is negligible, but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

In scientific computing, we use stability theory, or the study of propagation
of small changes by a process, to search for error growth in computations. In a
typical stability analysis, we focus on propagated error only, ignoring the original
sources of error. For example, Exercise 8 involves the backward recurrence
f

k�1

= f

k+1

� f

k

. In our stability analysis, we assume that the subtraction
is performed exactly and that the error in f

k�1

is entirely due to errors in f

k

7 If h is a power of two and f2 and f1 are within a factor of two of each other, then ✏r = 0.

12

It is unlikely that f

1

= d
f(x) ⇡ f(x) is exact. Many factors may contribute to

the errors e

1

= f

1

� f(x) and e

2

= f

2

� f(x + h), including inaccurate x values
and roundo↵ in the code to evaluate f . The propagated error comes from using
inexact values of f(x + h) and f(x):

f

2

� f

1

h

=
f(x + h)� f(x)

h

✓
1 +

e

2

� e

1

f

2

� f

1

◆
=

f(x + h)� f(x)
h

(1 + ✏

pr

) . (8)

The truncation error in the di↵erence quotient approximation is

f(x + h)� f(x)
h

= f

0(x)(1 + ✏

tr

). (9)

Finally, there is roundo↵ error in evaluating (f2 - f1) / h:

b
f

0 =
f

2

� f

1

h

(1 + ✏

r

). (10)

If we multiply the errors from (8)–(10) and simplify, we get (7).
Most of the error in this calculation comes from truncation error and prop-

agated error. The subtraction and the division in the evaluation of the divided
di↵erence each have relative error of at most ✏

mach

; thus, the roundo↵ error ✏

r

is at most about 2✏

mach

, which is relatively small7. We noted in Section 3 that
truncation error is roughly proportional to h. The propagated error ✏

pr

in the
outputs is roughly proportional to the absolute input errors e

1

and e

2

amplified

by a factor of h

�1:
✏

pr

=
e

2

� e

1

f

2

� f

1

⇡ e

2

� e

1

f

0(x)h
.

Even if ✏

1

= e

1

/f(x) and ✏

2

= e

2

/f(x+h) are small, ✏

pr

may be quite large.
This increase in relative error by a large factor in one step is another example
of catastrophic cancellation, which we described in Section 1. If the numbers
f(x) and f(x + h) are nearly equal, the di↵erence can have much less relative
accuracy than the numbers themselves. More subtle is gradual error growth over
many steps. Exercise 15 has an example in which the error roughly doubles at
each stage. Starting from double precision roundo↵ level, the error after 30
steps is negligible, but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

In scientific computing, we use stability theory, or the study of propagation
of small changes by a process, to search for error growth in computations. In a
typical stability analysis, we focus on propagated error only, ignoring the original
sources of error. For example, Exercise 8 involves the backward recurrence
f

k�1

= f

k+1

� f

k

. In our stability analysis, we assume that the subtraction
is performed exactly and that the error in f

k�1

is entirely due to errors in f

k

7 If h is a power of two and f2 and f1 are within a factor of two of each other, then ✏r = 0.

12

It is unlikely that f

1

= d
f(x) ⇡ f(x) is exact. Many factors may contribute to

the errors e

1

= f

1

� f(x) and e

2

= f

2

� f(x + h), including inaccurate x values
and roundo↵ in the code to evaluate f . The propagated error comes from using
inexact values of f(x + h) and f(x):

f

2

� f

1

h

=
f(x + h)� f(x)

h

✓
1 +

e

2

� e

1

f

2

� f

1

◆
=

f(x + h)� f(x)
h

(1 + ✏

pr

) . (8)

The truncation error in the di↵erence quotient approximation is

f(x + h)� f(x)
h

= f

0(x)(1 + ✏

tr

). (9)

Finally, there is roundo↵ error in evaluating (f2 - f1) / h:

b
f

0 =
f

2

� f

1

h

(1 + ✏

r

). (10)

If we multiply the errors from (8)–(10) and simplify, we get (7).
Most of the error in this calculation comes from truncation error and prop-

agated error. The subtraction and the division in the evaluation of the divided
di↵erence each have relative error of at most ✏

mach

; thus, the roundo↵ error ✏

r

is at most about 2✏

mach

, which is relatively small7. We noted in Section 3 that
truncation error is roughly proportional to h. The propagated error ✏

pr

in the
outputs is roughly proportional to the absolute input errors e

1

and e

2

amplified

by a factor of h

�1:
✏

pr

=
e

2

� e

1

f

2

� f

1

⇡ e

2

� e

1

f

0(x)h
.

Even if ✏

1

= e

1

/f(x) and ✏

2

= e

2

/f(x+h) are small, ✏

pr

may be quite large.
This increase in relative error by a large factor in one step is another example
of catastrophic cancellation, which we described in Section 1. If the numbers
f(x) and f(x + h) are nearly equal, the di↵erence can have much less relative
accuracy than the numbers themselves. More subtle is gradual error growth over
many steps. Exercise 15 has an example in which the error roughly doubles at
each stage. Starting from double precision roundo↵ level, the error after 30
steps is negligible, but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

In scientific computing, we use stability theory, or the study of propagation
of small changes by a process, to search for error growth in computations. In a
typical stability analysis, we focus on propagated error only, ignoring the original
sources of error. For example, Exercise 8 involves the backward recurrence
f

k�1

= f

k+1

� f

k

. In our stability analysis, we assume that the subtraction
is performed exactly and that the error in f

k�1

is entirely due to errors in f

k

7 If h is a power of two and f2 and f1 are within a factor of two of each other, then ✏r = 0.

12

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Consistency, Stability and Convergence
๏ Discretisation error:

➡ replacing the computational problem with an easier-to-solve
approximation

➡ for each n there is an algorithm that produces given

๏ A numerical method is:

➡ consistent - if the approximation error vanishes as

➡ stable - if propagated errors decrease as the computation progresses

➡ convergent - if the numerical error can be made arbitrarily small by
increasing the computational effort

๏ Other very important features, determining the choice of NM: accuracy,
reliability/robustness, efficiency

5

F (x, d) = 0 �! F̂n(x̂n, d̂n) = 0

x̂n d̂n

n ! 1

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Conditioning a Computational Problem

๏ A generic computational problem:

➡ Find solution x that satisfies a condition F(x,d)=0,for given data d

๏ Well posed problem has a unique solution that depends continuously on
the data. Otherwise:ill-posed problem (no numerical method will work!)

๏ Conditioning number (K):

➡ absolute error:

➡ relative error:

๏ K is an important intrinsic property of a computational problem.

๏ K∼1, problem is well-conditioned.

๏ Ill-conditioned problem: a given target accuracy of the solution
cannot be computed for a given accuracy of the data , i.e.
condition number K is large!

6

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||

x̂ = x+ �x

x̂ = (1 + ✏)x

x̂ = x+ �x

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||

Marina Krstic Marinkovic / 17 5633-Numerical Methods

More on Stability:
๏ Stability analysis in scientific computing: studying the propagation of small
changes by a process, to search for error growth in computations

➡ focuses on propagated error only (for simplicity)

๏ A numerical method is:

➡ stable - if propagated errors decrease as the computation progresses

➡ unstable - if relative errors in the output are much larger than relative
errors in the input (ill-conditioned —> unstable)

➡ backward stable algorithm - as stable as the condition number allows/
unstable only when the underlying problem is ill-conditioned (many Lin.Alg.
algorithms)

➡ forward stable algorithm - if it has a forward error () of magnitude
similar to some backward stable algorithm (/K is small)

➡ mixed stability: combines the forward error and the backward error ;
if there exists such that both and are small

7

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||K = sup

�d 6=0

||�x|| / ||x||
||�d|| / ||d||
x̂ = x+ �x

x̂ = x+ �x

x̂ = x+ �x

x̂ = x+ �x

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||

Marina Krstic Marinkovic / 17 5633-Numerical Methods

IEEE 754

๏ Computers represent everything using bit strings, i.e.,
integers in base-2. Integers can thus be exactly represented.
But not real numbers!

๏ IEEE Standard for floating-point arithmetic (est. 1985):

➡ Formats for representing and encoding real numbers using bit strings
(single and double precision)

➡ Rounding algorithms for performing accurate arithmetic operations (e.g.
addition,subtraction,division,multiplication) and conversions (e.g. single
to double precision)

➡ Exception handling for special situations (e.g. division by zero and
overflow)

8

• R programming:

Some info on the implementation of the IEEE 754 standard in R:
https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html

Marina Krstic Marinkovic / 17 5633-Numerical Methods

https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html

๏ Assume we have a computer that represents numbers using a given (decimal) number system

๏ Representing real numbers, with N available digits:

➡ Fixed-point representation:

- Problem with representing large/small numbers: 9.872 but 0.009

➡ Floating-point representation:

- Similar to the common scientific representation: 0.9872·10
1
and 0.9872·10

-2

๏ A floating-point number in base β is represented using:

➡ one sign bit s = 0 or 1 (positive or negative nr.)

➡ integer exponent giving its order of magnitude

➡ t-digit integer mantissa specifying actual digits of the number

9

Floating Point Representation

x = (�1)s[aN�2aN�3 . . . akak�1 . . . a0]

x = (�1)s · [0a1a2 . . . at] · �e = (�1)s ·m · �e�t

Marina Krstic Marinkovic / 17 5633-Numerical Methods

๏ IEEE representation example (single precision example):

Take the number x = 2752 = 0.2752 · 104

1. Converting 2752 to the binary:

2. On the computer:

10

IEEE Standard Representations

๏ IEEE non-normalised numbers

value power p fraction f
±0 0 0

denormal (subnormal) 0 >0
±∞(inf) 255 0

Not a number (NaN) 255 >0

x = 211 + 29 + 27 + 26 = (101011000000)2 = 211 · (1.01011)2
= (�1)02138�127 · (1.01011)2 = (�1)02(10001010)2�127 · (1.01011)2

x = [s |p | f]
= [0 | 100, 0101, 0 | 010, 1100, 0000, 0000, 0000, 0000]
= (452c0000)16

x = (�1)s · 2p�127 · (1.f)2

Marina Krstic Marinkovic / 17 5633-Numerical Methods

๏ Representation of single(a) and double(b) precision numbers:

11

IEEE Standard Representations

๏ See wikipedia article on IEEE:

https://en.wikipedia.org/wiki/IEEE_754-1985

[Illustrations: By Codekaizen -
 Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3595583]

(a)

(b)

Marina Krstic Marinkovic / 17 5633-Numerical Methods

https://en.wikipedia.org/wiki/IEEE_754-1985
https://commons.wikimedia.org/w/index.php?curid=3595583

๏ R-script for conversion of integer to binary

function for converting integer to binary numbers
binary<-function(p_number)
{
bsum<-0
bexp<-1
while (p_number > 0) {
digit<-p_number %% 2
p_number<-floor(p_number / 2) #predefined math function floor
 #floor(x) gives [x]
bsum<-bsum + digit * bexp
bexp<-bexp * 10
}
return(bsum)
}

p_number<-readline("Decimal number: ") #reading a number decimal representation
p_number<-as.numeric(p_number) #converts the input to integer
bsum<-binary(p_number) #calls function to perform conversion to binary
cat("Binary: ", bsum) #prints binary number

12

IEEE Standard Representations

> source(“binary.sh”)
Decimal number: 2752
Binary: 1.01011e+11>

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Important Facts about Floating-Point

๏ Not all real numbers x, or even integers, can be represented
exactly as a floating-point number, instead, they must be rounded
to the nearest floating point number

๏ The relative spacing or gap between a floating-point x and the
nearest other one is at most ε = 2−Nf, sometimes called ulp (unit
of least precision). In particular, 1 + ε is the first floating-
point number larger than 1

๏ Floating-point numbers have a relative rounding error that is
smaller than the machine precision or roundoff-unit u. The rule
of thumb is that single precision gives 7-8 digits of precision
and double 16 digits

๏ Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics!

13Marina Krstic Marinkovic / 17 5633-Numerical Methods

Floating-Point Exceptions

๏ Computing with floating point values may lead to
exceptions, which may be trapped and halt the program:

• Divide-by-zero, the result is ±∞
• Invalid if the result is a NaN
• Overflow if the result is too large to be represented
• Underflow if the result is too small to be represented

14

๏ Numerical software needs to be careful about avoiding
exceptions where possible

➡ Do not compare floating point numbers (especially
for loop termination), or more generally, do not
rely on logic from pure mathematics!

Marina Krstic Marinkovic / 17 5633-Numerical Methods

๏ If x and y are close to each other, x − y can have reduced
accuracy due to cancellation of digits.

๏ Note: If gradual underflow is not supported x − y can be zero
even if x and y are not exactly equal

๏ Benign cancellation: subtracting two exactly-known IEEE numbers
results in a relative error of no more than an ulp. The result
is precise

๏ Catastrophic cancellation occurs when subtracting two nearly
equal inexact numbers and leads to loss of accuracy and a large
relative error in the result

๏ For example, 1.1234 − 1.1223 = 0.0011 which only has 2
significant digits instead of 4. The result is not accurate

15

Numerical Cancellation

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Avoiding Cancellation

16

๏ Rewriting in mathematically-equivalent but numerically-
preferred form is the first try

➡ For example

➡ to avoid catastrophic cancellation. But what about the extra
cost?

๏ Sometimes one can use Taylor series or other approximation to
get an approximate but stable result

p
x+ � �

p
x �! �p

x+ � +
p
x

p
x+ � �

p
x ⇡ �

2

p
x

for � ⌧ x

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Summary
๏ A numerical method needs to control the various computational

errors (approximation, roundoff …) while balancing computational
cost

๏ The IEEE standard (attempts to) standardises the single and
double precision floating-point formats, their arithmetic, and
exceptions. It is widely implemented (R, Matlab, C, …)

๏ Numerical overflow, underflow and cancellation need to be
carefully considered and may be avoided

๏ Mathematically-equivalent forms are not numerically-equivalent

๏ Never compare floating point numbers! Especially for loop
termination, or more generally, do not rely on logic from pure
mathematics

๏ Some disastrous things might happen due to applying numerical
methods in an incorrect way

17Marina Krstic Marinkovic / 17 5633-Numerical Methods

https://www.ima.umn.edu/~arnold/disasters/

