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2Marina Krstic Marinkovic          /  17     5633-Numerical Methods



Computational Errors

๏ A numerical method must use a finite representation for numbers and 
thus cannot possibly produce an exact answer for all problems 

➡ For example, 3.14159 instead of π etc. (also √2,2/3 etc.) 

๏ Sources of error:

➡ Truncation error (approximate formulas, including discret. error)

➡ Roundoff error (inexact computer arithmetics)

➡ Propagated error (errors from input, or previous calc.)

➡ Statistical error (stochastic calc.: Monte Carlo; sampling)

๏ References for this lecture:
➡ David Bindel, Jonathan Goodman “Principles of Scientific 

Computing Sources of Error”, Chapter “Sources of Error” 
➡ Most of the material taken from: http://cims.nyu.edu/~donev/

Teaching/NMI-Fall2010/Lecture1.handout.pdf
➡ https://cran.r-project.org/doc/manuals/R-intro.pdf
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๏ Errors can grow as they propagate through a computation, e.g. 

๏ Three contributions to the error:

➡ Truncation error: 

➡ Roundoff error: 

➡ Propagated error (using inexact values of f(x) and f(x+h) in 
the first place): 

Error propagation and amplification
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n 10 100 104 106 106

b
A .603 .518 .511 .5004 .4991

error .103 1.8⇥ 10�2 1.1⇥ 10�2 4.4⇥ 10�4 �8.7⇥ 10�4

Figure 4: Statistical errors in a demonstration Monte Carlo computation.

5 Statistical error in Monte Carlo

Monte Carlo means using random numbers as a computational tool. For ex-
ample, suppose6

A = E[X], where X is a random variable with some known
distribution. Sampling X means using the computer random number generator
to create independent random variables X
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, X
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, . . ., each with the distribution
of X. The simple Monte Carlo method would be to generate n such samples
and calculate the sample mean:
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The di↵erence between b
A and A is statistical error. A theorem in probability,

the law of large numbers, implies that b
A! A as n!1. Monte Carlo statistical

errors typically are larger than roundo↵ or truncation errors. This makes Monte
Carlo a method of last resort, to be used only when other methods are not
practical.

Figure 4 illustrates the behavior of this Monte Carlo method for the random
variable X = 3

2

U

2 with U uniformly distributed in the interval [0, 1]. The exact
answer is A = E[X] = 3

2

E[U2] = .5. The value n = 106 is repeated to illustrate
the fact that statistical error is random (see Chapter ?? for a clarification of
this). The errors even with a million samples are much larger than those in the
right columns of Figures 3 and 3.

6 Error propagation and amplification

Errors can grow as they propagate through a computation. For example, con-
sider the divided di↵erence (6):

f1 = . . . ; // approx of f(x)
f2 = . . . ; // approx of f(x+h)
fPrimeHat = ( f2 - f1 ) / h ; // approx of derivative

There are three contributions to the final error in f
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6
E[X] is the expected value of X. Chapter ?? has some review of probability.
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If we multiply the errors from (8)–(10) and simplify, we get (7).
Most of the error in this calculation comes from truncation error and prop-
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This increase in relative error by a large factor in one step is another example
of catastrophic cancellation, which we described in Section 1. If the numbers
f(x) and f(x + h) are nearly equal, the di↵erence can have much less relative
accuracy than the numbers themselves. More subtle is gradual error growth over
many steps. Exercise 15 has an example in which the error roughly doubles at
each stage. Starting from double precision roundo↵ level, the error after 30
steps is negligible, but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

In scientific computing, we use stability theory, or the study of propagation
of small changes by a process, to search for error growth in computations. In a
typical stability analysis, we focus on propagated error only, ignoring the original
sources of error. For example, Exercise 8 involves the backward recurrence
f

k�1

= f

k+1

� f

k

. In our stability analysis, we assume that the subtraction
is performed exactly and that the error in f

k�1

is entirely due to errors in f

k

7 If h is a power of two and f2 and f1 are within a factor of two of each other, then ✏r = 0.
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Consistency, Stability and Convergence
๏ Discretisation error: 

➡ replacing the computational problem with an easier-to-solve 
approximation

➡ for each n there is an algorithm that produces     given    

๏ A numerical method is:

➡ consistent - if the approximation error vanishes as

➡ stable - if propagated errors decrease as the computation progresses

➡ convergent - if the numerical error can be made arbitrarily small by  
increasing the computational effort

๏ Other very important features, determining the choice of NM: accuracy, 
reliability/robustness, efficiency

5

F (x, d) = 0 �! F̂n(x̂n, d̂n) = 0

x̂n d̂n

n ! 1
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Conditioning a Computational Problem

๏ A generic computational problem:

➡ Find solution x that satisfies a condition F(x,d)=0,for given data d

๏ Well posed problem has a unique solution that depends continuously on 
the data. Otherwise:ill-posed problem (no numerical method will work!)

๏ Conditioning number (K):

➡ absolute error:  

➡ relative error:

๏ K is an important intrinsic property of a computational problem.  

๏ K∼1, problem is well-conditioned. 

๏ Ill-conditioned problem: a given target accuracy of the solution  
cannot  be computed for a given accuracy of the data           , i.e. 
condition number K is large!

6

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||

x̂ = x+ �x

x̂ = (1 + ✏)x

x̂ = x+ �x

K = sup
�d 6=0

||�x|| / ||x||
||�d|| / ||d||
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More on Stability:
๏ Stability analysis in scientific computing: studying the propagation of small 
changes by a process, to search for error growth in computations 

➡ focuses on propagated error only (for simplicity)

๏ A numerical method is:

➡ stable - if propagated errors decrease as the computation progresses

➡ unstable - if relative errors in the output are much larger than relative 
errors in the input  (ill-conditioned —> unstable)

➡ backward stable algorithm - as stable as the condition number allows/
unstable only when the underlying problem is ill-conditioned  (many Lin.Alg. 
algorithms)

➡ forward stable algorithm -  if it has a forward error (  ) of magnitude 
similar to some backward stable algorithm (  /K is small)

➡ mixed stability: combines the forward error    and the backward error   ; 
if there exists     such that both    and      are small 

7
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IEEE 754

๏ Computers represent everything using bit strings, i.e., 
integers in base-2. Integers can thus be exactly represented. 
But not real numbers!

๏ IEEE Standard for floating-point arithmetic (est. 1985):

➡ Formats for representing and encoding real numbers using bit strings 
(single and double precision)

➡ Rounding algorithms for performing accurate arithmetic operations (e.g. 
addition,subtraction,division,multiplication) and conversions (e.g. single 
to double precision)

➡ Exception handling for special situations (e.g. division by zero and 
overflow)

8

• R programming:

Some info on the implementation of the IEEE 754 standard in R:
https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html
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๏ Assume we have a computer that represents numbers using a given (decimal) number system

๏ Representing real numbers, with N available digits:

➡ Fixed-point representation: 

- Problem with representing large/small numbers: 9.872 but 0.009

➡ Floating-point representation:

- Similar to the common scientific representation: 0.9872·10
1 
and 0.9872·10

-2

๏ A floating-point number in base β is represented using:

➡ one sign bit s = 0 or 1 (positive or negative nr.)

➡ integer exponent giving its order of magnitude

➡ t-digit integer mantissa specifying actual digits of the number

                                 

9

Floating Point Representation

x = (�1)s[aN�2aN�3 . . . akak�1 . . . a0]

                                 
x = (�1)s · [0a1a2 . . . at] · �e = (�1)s ·m · �e�t
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๏ IEEE representation example (single precision example):

Take the number x = 2752 = 0.2752 · 104

1. Converting 2752 to the binary:       
              

2. On the computer:      

10

IEEE Standard Representations

๏ IEEE non-normalised numbers

value power p fraction f
±0 0 0

denormal (subnormal) 0 >0
±∞(inf ) 255 0

Not a number (NaN) 255 >0

x = 211 + 29 + 27 + 26 = (101011000000)2 = 211 · (1.01011)2
= (�1)02138�127 · (1.01011)2 = (�1)02(10001010)2�127 · (1.01011)2

x = [s |p | f ]
= [0 | 100, 0101, 0 | 010, 1100, 0000, 0000, 0000, 0000]
= (452c0000)16

x = (�1)s · 2p�127 · (1.f)2
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๏ Representation of single(a) and double(b) precision numbers:

11

IEEE Standard Representations

๏ See wikipedia article on IEEE:

https://en.wikipedia.org/wiki/IEEE_754-1985

[Illustrations: By Codekaizen -
 Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3595583]

(a)

(b)
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๏ R-script for conversion of integer to binary

# function for converting integer to binary numbers 
binary<-function(p_number)  
{ 
bsum<-0 
bexp<-1 
while (p_number > 0) { 
digit<-p_number %% 2 
p_number<-floor(p_number / 2)           #predefined math function floor  
                                        #floor(x) gives [x] 
bsum<-bsum + digit * bexp 
bexp<-bexp * 10 
} 
return(bsum) 
} 

p_number<-readline("Decimal number: ")  #reading a number decimal representation 
p_number<-as.numeric(p_number)          #converts the input to integer 
bsum<-binary(p_number)                  #calls function to perform conversion to binary 
cat("Binary: ", bsum)                   #prints binary number                     

12

IEEE Standard Representations

> source(“binary.sh”)
Decimal number: 2752 
Binary:  1.01011e+11> 
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Important Facts about Floating-Point

๏ Not all real numbers x, or even integers, can be represented 
exactly as a floating-point number, instead, they must be rounded 
to the nearest floating point number

๏ The relative spacing or gap between a floating-point x and the 
nearest other one is at most ε = 2−Nf, sometimes called ulp (unit 
of least precision). In particular, 1 + ε is the first floating-
point number larger than 1

๏ Floating-point numbers have a relative rounding error that is 
smaller than the machine precision or roundoff-unit u. The rule 
of thumb is that single precision gives 7-8 digits of precision 
and double 16 digits

๏ Do not compare floating point numbers (especially for loop 
termination), or more generally, do not rely on logic from pure 
mathematics!
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Floating-Point Exceptions

๏ Computing with floating point values may lead to 
exceptions, which may be trapped and halt the program:

• Divide-by-zero, the result is ±∞  
• Invalid if the result is a NaN 
• Overflow if the result is too large to be represented  
• Underflow if the result is too small to be represented                                                                                   

14

๏ Numerical software needs to be careful about avoiding 
exceptions where possible

➡ Do not compare floating point numbers (especially 
for loop termination), or more generally, do not 
rely on logic from pure mathematics!
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๏ If x and y are close to each other, x − y can have reduced 
accuracy due to cancellation of digits.

๏ Note: If gradual underflow is not supported x − y can be zero 
even if x and y are not exactly equal

๏ Benign cancellation: subtracting two exactly-known IEEE numbers 
results in a relative error of no more than an ulp. The result 
is precise

๏ Catastrophic cancellation occurs when subtracting two nearly 
equal inexact numbers and leads to loss of accuracy and a large 
relative error in the result

๏ For example, 1.1234 − 1.1223 = 0.0011 which only has 2 
significant digits instead of 4. The result is not accurate

15

Numerical Cancellation
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Avoiding Cancellation

16

๏ Rewriting in mathematically-equivalent but numerically-
preferred form is the first try

➡ For example

➡ to avoid catastrophic cancellation. But what about the extra 
cost?

๏ Sometimes one can use Taylor series or other approximation to 
get an approximate but stable result

p
x+ � �

p
x �! �p

x+ � +
p
x

p
x+ � �

p
x ⇡ �

2

p
x

for � ⌧ x
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Summary
๏ A numerical method needs to control the various computational 

errors (approximation, roundoff …) while balancing computational 
cost

๏ The IEEE standard (attempts to) standardises the single and 
double precision floating-point formats, their arithmetic, and 
exceptions. It is widely implemented  (R, Matlab, C, …)

๏ Numerical overflow, underflow and cancellation need to be 
carefully considered and may be avoided

๏ Mathematically-equivalent forms are not numerically-equivalent

๏ Never compare floating point numbers! Especially for loop 
termination, or more generally, do not rely on logic from pure 
mathematics

๏ Some disastrous things might happen due to applying numerical 
methods in an incorrect way
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