Numerical Methods 5633

Lecture 2 Michaelmas Term 2018

Marina Krstic Marinkovic mmarina@maths.tcd.ie

School of Mathematics Trinity College Dublin

Organisational (Michaelmas Term 2018)

```
• No MA5533 lecture next week: 26.09.2018 (MA5513 class
  instead)
```

Changed time of the lecture, as of next week

	To appear	Submission DL
Assignment 1	10.10	2.11
Assignment 2	14.11	30.11

Computational Errors

- A numerical method must use a **finite representation** for numbers and thus cannot possibly produce an exact answer for all problems
 - → For example, 3.14159 instead of π etc. (also $\sqrt{2}$,2/3 etc.)
- Sources of error:
 - Truncation error (approximate formulas, including discret. error)
 - ➡ Roundoff error (inexact computer arithmetics)
 - Propagated error (errors from input, or previous calc.)
 - Statistical error (stochastic calc.: Monte Carlo; sampling)
- References for this lecture:
 - → David Bindel, Jonathan Goodman "Principles of Scientific Computing Sources of Error", Chapter "Sources of Error"
 - Most of the material taken from: http://cims.nyu.edu/~donev/ Teaching/NMI-Fall2010/Lecture1.handout.pdf
 - https://cran.r-project.org/doc/manuals/R-intro.pdf

Error propagation and amplification

• Errors can grow as they propagate through a computation, e.g.

```
f1 = ...; // approx of f(x)

f2 = ...; // approx of f(x+h)

fPrimeHat = (f2 - f1) / h; // approx of derivative
```

- Three contributions to the error:
 - ➡ Truncation error:

$$\frac{f(x+h) - f(x)}{h} = f'(x)(1 + \epsilon_{\rm tr})$$

→ Roundoff error:

$$\widehat{f'} = \frac{f_2 - f_1}{h} (1 + \epsilon_r).$$

Propagated error (using inexact values of f(x) and f(x+h) in the first place): $f(x+h) = f(x+h) - f(x) \left(-\frac{e_2 - e_1}{h} \right) + \frac{f(x+h) - f(x)}{h} \left($

$$\frac{f_2 - f_1}{h} = \frac{f(x+h) - f(x)}{h} \left(1 + \frac{e_2 - e_1}{f_2 - f_1} \right) = \frac{f(x+h) - f(x)}{h} \left(1 + \epsilon_{\rm pr} \right)$$

Consistency, Stability and Convergence

$$ullet$$
 Discretisation error: $F(x,d)=0 \longrightarrow \hat{F}_n(\hat{x}_n,\hat{d}_n)=0$

- replacing the computational problem with an easier-to-solve approximation
- lacktriangle for each n there is an algorithm that produces \hat{x}_n given d_n
- A numerical method is:
 - ightharpoonup consistent if the approximation error vanishes as $n o \infty$
 - ➡ stable if propagated errors decrease as the computation progresses
 - convergent if the numerical error can be made arbitrarily small by increasing the computational effort
- Other very important features, determining the choice of NM: accuracy, reliability/robustness, efficiency

Conditioning a Computational Problem

- A generic computational problem:
 - \rightarrow Find solution x that satisfies a condition F(x,d)=0, for given data d
- Well posed problem has a unique solution that depends continuously on the data. Otherwise:ill-posed problem (no numerical method will work!)
- Conditioning number (K):

$$K = \sup_{\delta d \neq 0} \frac{||\delta x|| / ||x||}{||\delta d|| / ||d||}$$

- ightharpoonup absolute error: $\hat{x} = x + \delta x$
- ightharpoonup relative error: $\hat{x} = (1+\epsilon)x$
- K is an important intrinsic property of a computational problem.
- K~1, problem is well-conditioned.
- ullet Ill-conditioned problem: a given target accuracy of the solution δx cannot be computed for a given accuracy of the data δd , i.e. condition number K is large!

More on Stability:

- Stability analysis in scientific computing: studying the propagation of small changes by a process, to search for error growth in computations
 - ➡ focuses on propagated error only (for simplicity)
- A numerical method is:
 - **⇒ stable** if propagated errors decrease as the computation progresses
 - unstable if relative errors in the output are much larger than relative errors in the input (ill-conditioned -> unstable)
 - ⇒ backward stable algorithm as stable as the condition number allows/ unstable only when the underlying problem is ill-conditioned (many Lin.Alg. algorithms)
 - ightharpoonup forward stable algorithm if it has a forward error (δx) of magnitude similar to some backward stable algorithm ($\delta x/K$ is small)
 - ightharpoonup mixed stability: combines the forward error δx and the backward error δd ; if there exists δd such that both δd and δx are small

IEEE 754

- Computers represent everything using bit strings, i.e., integers in base-2. Integers can thus be exactly represented. But not real numbers!
- IEEE Standard for floating-point arithmetic (est. 1985):
 - Formats for representing and encoding real numbers using bit strings (single and double precision)
 - ➡ Rounding algorithms for performing accurate arithmetic operations (e.g. addition, subtraction, division, multiplication) and conversions (e.g. single to double precision)
 - ➡ Exception handling for special situations (e.g. division by zero and overflow)

R programming:

Some info on the implementation of the IEEE 754 standard in R: https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html

Floating Point Representation

- Assume we have a computer that represents numbers using a given (decimal) number system
- Representing real numbers, with N available digits:
 - ➡ Fixed-point representation:

$$x = (-1)^s [a_{N-2}a_{N-3} \dots a_k a_{k-1} \dots a_0]$$

- Problem with representing large/small numbers: 9.872 but 0.009
- Floating-point representation:

$$x = (-1)^s \cdot [0a_1a_2 \dots a_t] \cdot \beta^e = (-1)^s \cdot m \cdot \beta^{e-t}$$

- Similar to the common scientific representation: 0.9872·10 and 0.9872·10 and
- \odot A floating-point number in base β is represented using:
 - \rightarrow one **sign** bit s = 0 or 1 (positive or negative nr.)
 - integer exponent giving its order of magnitude
 - t-digit integer mantissa specifying actual digits of the number

IEEE Standard Representations

• IEEE representation example (single precision example):

Take the number $x = 2752 = 0.2752 \cdot 10^4$

1. Converting 2752 to the binary:

$$x = 2^{11} + 2^9 + 2^7 + 2^6 = (101011000000)_2 = 2^{11} \cdot (1.01011)_2$$
$$= (-1)^0 2^{138 - 127} \cdot (1.01011)_2 = (-1)^0 2^{(10001010)_2 - 127} \cdot (1.01011)_2$$

2. On the computer:

$$x = (-1)^s \cdot 2^{p-127} \cdot (1.f)_2$$

$$x = [s \mid p \mid f]$$

= $[0 \mid 100, 0101, 0 \mid 010, 1100, 0000, 0000, 0000, 0000]$
= $(452c0000)_{16}$

• IEEE non-normalised numbers

value	power p	fraction f
±0	0	0
denormal (subnormal)	0	>0
±∞(inf)	255	0
Not a number (NaN)	255	>0

IEEE Standard Representations

Representation of single(a) and double(b) precision numbers:

[Illustrations: By Codekaizen Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3595583]

See wikipedia article on IEEE:

https://en.wikipedia.org/wiki/IEEE_754-1985

IEEE Standard Representations

R-script for conversion of integer to binary

```
# function for converting integer to binary numbers
binary<-function(p_number)</pre>
bsum<-0
bexp<-1
while (p_number > 0) {
digit<-p_number %% 2</pre>
p_number<-floor(p_number / 2)</pre>
                                            #predefined math function floor
                                            #floor(x) gives [x]
bsum<-bsum + digit * bexp</pre>
bexp < -bexp * 10
return(bsum)
p_number<-readline("Decimal number: ") #reading a number decimal representation</pre>
p_number<-as numeric(p_number)</pre>
                                            #converts the input to integer
bsum<-binary(p_number)</pre>
                                            #calls function to perform conversion to binary
cat("Binary: ", bsum)
                                            #prints binary number
```

```
> source("binary.sh")
Decimal number: 2752
Binary: 1.01011e+11>
```

Important Facts about Floating-Point

- Not all real numbers x, or even integers, can be represented exactly as a floating-point number, instead, they must be rounded to the nearest floating point number
- The relative spacing or gap between a floating-point x and the nearest other one is at most $\mathbf{E} = \mathbf{2}^{-Nf}$, sometimes called **ulp** (unit of least precision). In particular, $\mathbf{1} + \mathbf{E}$ is the first floating-point number larger than 1
- Floating-point numbers have a relative rounding error that is smaller than the machine precision or roundoff-unit u. The rule of thumb is that single precision gives 7-8 digits of precision and double 16 digits
- Do not compare floating point numbers (especially for loop termination), or more generally, do not rely on logic from pure mathematics!

Floating-Point Exceptions

 Computing with floating point values may lead to exceptions, which may be trapped and halt the program:

- **Divide-by-zero**, the result is $\pm \infty$
- Invalid if the result is a NaN
- Overflow if the result is too large to be represented
- **Underflow** if the result is too small to be represented
- Numerical software needs to be careful about avoiding exceptions where possible
 - Do not compare floating point numbers (especially for loop termination), or more generally, do not rely on logic from pure mathematics!

Numerical Cancellation

- If x and y are close to each other, x y can have reduced accuracy due to cancellation of digits.
- Note: If gradual underflow is not supported x y can be zero even if x and y are not exactly equal
- Benign cancellation: subtracting two exactly-known IEEE numbers results in a relative error of no more than an ulp. The result is **precise**
- Catastrophic cancellation occurs when subtracting two nearly equal inexact numbers and leads to loss of accuracy and a large relative error in the result
- \bullet For example, 1.1234 1.1223 = 0.0011 which only has 2 significant digits instead of 4. The result is not accurate

Avoiding Cancellation

- Rewriting in mathematically-equivalent but numericallypreferred form is the first try
 - → For example

$$\sqrt{x+\delta} - \sqrt{x} \longrightarrow \frac{\delta}{\sqrt{x+\delta} + \sqrt{x}}$$

- to avoid catastrophic cancellation. But what about the extra cost?
- Sometimes one can use Taylor series or other approximation to get an approximate but stable result

$$\sqrt{x+\delta} - \sqrt{x} \approx \frac{\delta}{2\sqrt{x}}$$
 for $\delta \ll x$

Summary

- A numerical method needs to control the various computational errors (approximation, roundoff ...) while balancing computational cost
- The IEEE standard (attempts to) standardises the single and double precision floating-point formats, their arithmetic, and exceptions. It is widely implemented (R, Matlab, C, ...)
- Numerical overflow, underflow and cancellation need to be carefully considered and may be avoided
- Mathematically-equivalent forms are not numerically-equivalent
- Never compare floating point numbers! Especially for loop termination, or more generally, do not rely on logic from pure mathematics
- Some disastrous things might happen due to applying numerical methods in an incorrect way