Numerical Methods
5633

Lecture 4
Michaelmas Term 2017

Marina Krstic Marinkovic
mmarina@maths.tcd.ie

School of Mathematics
Trinity College Dublin

Marina Krstic Marinkovic 1/ 17 5633-Numerical Methods

mailto:marina.marinkovic@cern.ch?subject=

Root Finding

= Finding an argument of a function f(x) that makes y=f(x) zero

= We seek the value &, such that

f(a)=0

|

X - zero of the function f(x)

= & - root of the equation f(x)=0

= f(x) may be a scalar, or a vector-valued function of a
vector-valued variable —> solving system of equations

— Bisection Method

— Newton’s method

- Secant Method

Marina Krstic Marinkovic 2 /17 5633-Numerical Methods

Bisection Method

. Given an 1nitial interval [ae,bel=[a,b], set k=0

. Compute ck+1=ak+(bk—ax) /2
. IT f(ck+1) F(ak)<O then set dk+1=4dk, bk+1=Ck+1
If f(Ck+1)f(bk)<0 then set dk+1=Ck+1, bk+1=bk

. Update k and go to Step 2.

= Each step i1s decreasing an upper bound on the absolute error by
a factor of 2

= Programming hint: For numerical stability, we want to replace
(atb)/2 with a+(b-a)/2. This is because large values of a,b may
lead to the computational overflow in (atb)/2.

Marina Krstic Marinkovic 3/ 17 5633-Numerical Methods

Bisection Convergence and Error Theorem

Let [ae,be]l=[a,b] be the initial interval, with f(a)f(b)<0.
If we define an approximate root as Xp=cn=(an-1 + bn-1)/2,
then there exists a root a€la,b] s.t.

1
k%—@ﬁ§§zw—a)

Moreover, to achieve accuracy of

a— T, <€

1t suffices to take

log(b—a) —loge

n >

Marina Krstic Marinkovic 4 / 17 5633-Numerical Methods

Bisection Method for root-finding

Bisection method for root-finding

#

f — user defined function

a — start of an interval

b — end of an interval

nmax — maximal number of steps in the bisection method (divisions of the interval [a,b])
eps - required precision for the root

BisectionMethod <- function(f, a, b, eps, nmax) {
fa <- f(a) # check if a or b are the root of f(x)
if (fa == 0.0) {
return(a)
}

fb <— f(b)

if (fb == 0.0) {
return(b)

}

k=1 # iteration nr. counter
while ((abs(a-b)>eps)&&(k<nmax))
{
X0 <— a+(b-a)/2 # finding midpoint of the interval
if ((f(a) *x f(x0)) < 0)
b<-x0
else
a<—x0
k<—k+1
¥

if (k<nmax) {
print('The found root on the interval [a,b] is:')
return(xo)

}

else

print('Maximal number of iterations reached and solution not yet found.')

Marina Krstic Marinkovic 5 / 17 5633-Numerical Methods

Bisection Method for root-finding

f<—function(x)

{
by

Xk*k3—2

a<-1
b<-2

eps<-1le-10
n<-1000

source(‘BisectionMethod.R’)
NewtonMethod(f,a,b,eps,n)

Marina Krstic Marinkovic 6 / 17 5633-Numerical Methods

Bisection Method

= Globally convergent method: it always converges no matter
how far from the actual root we start, assuming that the
root is “bracketed” (f(a)f(b)<0)

= Disadvantages:

— cannot be used when the function i1s tangent to the axis
and does not pass through the axis (e.g. f(x)=x2)

— converges slowly compared to other methods

= How many iterations is needed in bisection method in order
to decrease the initial error by a factor of ~1000?

Marina Krstic Marinkovic 7/ 17 5633-Numerical Methods

Newton’s Method

Historically - first used by Newton in 1669
Babylonians also had a method for approximating sqgrt(x)

Assume we want to find a root of y=f(x) given an initial guess Xo

i ¥ 1 1

Newton’s method uses tangent line approximation to f at (Xo,f(X0))

' Tangent at x,

Tangent at x;

Marina Krstic Marinkovic 8 / 17 5633-Numerical Methods

Newton’s Method

= Tangent line approximation to f at (xo,£f(X0))

Y —Yo _
x — x0 I (o)

= Finding where this tangent line crosses the x-axis (y=0)

Marina Krstic Marinkovic 9 / 17 5633-Numerical Methods

Newton’s Method

= Example: f(x)=2-e*, choosing x0=0

2 et 21

A T
2___ X1 2 _
Po = x — 127 % (.7357588823
_exl —e
2 —e"?
Tg = Lo — — 0.6940422999

—pT2

= The convergence is much more rapid then the for the bisection

n Xn X—-Xn logio(X—Xn)
0 0.0000000 0.6931472 -0.1591
1 1.000000 0.3068528 -0.5131
2 0.7357589 0.0426117 -1.3705
3 0.6940423 0.0008951 -3.0481
4 0.6931476 0.0000004 -6.3974
5 0.6931472 0.0000000 -13.0553

Marina Krstic Marinkovic 10 / 17 5633-Numerical Methods

Convergence of Newton’s Method

= Study other examples:

= f(x)=4/3e2-*/2(1+x-1log(x)), Application of Newton’s method will
be problematic unless the initial guess X0 1s chosen very
carefully. What happens in case x0€[0.8,1.2]?

= How about f(x)=arctan(x) - try to apply Newton’s method here,
with initial guess x0=1.39174520027

If f, " anf f” are continuous near the root, and if ' does not equal 0 at the root,
then Newton’s method will converge whenever the initial guess is sufficiently
close to the root.

= This convergence will be very rapid (see example on previous
page) —> number of correct digits doubling in every iteration

Marina Krstic Marinkovic 11 / 17 5633-Numerical Methods

Newton’s Method

= Locally convergent method: we have to start the iteration

with a “good enough” approximation to the root, otherwise
the method will not converge

= Stopping criterium for the Newton’s method:

= Warning! If f’'(xn) 1s very large compared to f(xn), it 1is
possible to have | Xn+1 -Xn| small and yet not have Xn+1 very
close to «

— common to add a term to the error check:

f(xn)] + |20 — 1] < €/5

= Disadvantages:

- requires a formula for the derivative of f(x)!

Marina Krstic Marinkovic 12 / 17 5633-Numerical Methods

Newton’s Method for root-finding

Note: other implementation of num. derivative is possible (e.g. backward, symmetric or some predefined function
in R could be used)

user defined function

start of an interval

end of an interval

step used in the numerical integration
— required precision for the root
maximal number of iterations

NumDerivative <- function (f, x@,dx) computing numerical derivative of a function f

{
by

NewtonMethod <- function(f, a, b, eps, n) {
X0 <- a setting start value to the interval lower bound
fa <- f(a) check if a or b are the root of f(x)
if (fa == 0.0) {
return(a)
}

fb <- f(b)

if (fb == 0.0) {
return(b)

}

for (k in 1:n) {
fprime= NumDerivative(f, x0, dx) # f'(x0)
x1 = x0 - (f(x0) / fprime) # calculate next value x1
#
]

(f(x0+dx)-f(x0))/dx

if (abs(x1 - x0) < eps) { check if required precision reached
print('The found root on the interval [a,b] is:')
return(x1)

#continue Newton's method until convergence or max #iter. reached

print('Maximal number of iterations reached and solution not yet found.')

Marina Krstic Marinkovic 13 / 17 5633-Numerical Methods

Newton’s Method for root-finding

f<—function(x)

{

X*kk3-2

¥

a<-1

b<-2
dx<-1le-7
eps<-1le-10
n<-1000

source(‘NewtonMethod.R"’)
NewtonMethod(f,a,b,eps,n)

Marina Krstic Marinkovic 14 / 17 5633-Numerical Methods

Secant Method

= Disadvantage of the Newton’s Method:

- requires a formula for the derivative of f(x)!

= Approximate the derivative with “secant line”
= two points in the curve needed (instead of just one for the tangent)

= Assume two initial guesses are given: Xo,X1; f(xo)=fo £(x1)=%f1

A

Jo f S

I S A A S ——— ———

o S — ——— -

b
4
.
®
Ly

Marina Krstic Marinkovic 15 / 17 5633-Numerical Methods

Secant Method

= Assume two initial guesses are given: Xo,X1

= The secant line

y— f(z1) f(z1) — f(=o)

r — L1 — X0

= Setting y=0 and solving for x=x3:

= Or, generally:

= Consistent with Newton’s method, with approximation:

f(xn) — f(xn_1)

Ty — Loy

Marina Krstic Marinkovic 16 / 17 5633-Numerical Methods

Secant Method

1. Given two initial quesses Xo,X1, and f(xe)=fe f(x1)=f1 set k=1

2. Compute Xks1=X1—F1x(X1-Xo)/ (F1—F0)

3. Compute f(Xks1); Assign: Xe=Xi1, Xi1=Xk+1} Fe=F1=F(Xoe), f1=F (Xk+1)

| Xx1-xo|<tol then set root=x1i, exit the loop.

= Less costly than the Newton’s method (one function call per
iteration)

= Similar convergence propreties as Newton’s method

= FError formula for secant method:

1 1" (Cn)

O — Tyt = 5(04 — Tp) (a0 — Tp_1))

min{a, Tn, Tn_1} < Cn, Mn < max{a, Tn, Tp_1}
= Therefore:
o —xpy1| = Cla— xp||la — xn_1], for x, ~ a,rp11 R, Ty 1~

= Programming hint: avoid unnecessary function calls 1in your code!

Marina Krstic Marinkovic 17 / 17 5633-Numerical Methods

