
Marina Krstic Marinkovic / 17 5633-Numerical Methods

School of Mathematics
Trinity College Dublin

Marina Krstic Marinkovic
mmarina@maths.tcd.ie

Numerical Methods
5633

School of Mathematics
Trinity College Dublin

Lecture 4

1

Michaelmas Term 2017

mailto:marina.marinkovic@cern.ch?subject=

Root Finding

2

 f(α)=0

➡ Finding an argument of a function f(x) that makes y=f(x) zero

➡ We seek the value α, such that

➡ α - zero of the function f(x)
➡ α - root of the equation f(x)=0

➡ f(x) may be a scalar, or a vector-valued function of a
vector-valued variable —-> solving system of equations

- Bisection Method

- Newton’s method

- Secant Method

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Bisection Method

3

1. Given an initial interval [a0,b0]=[a,b], set k=0

2. Compute ck+1=ak+(bk-ak)/2

3. If f(ck+1)f(ak)<0 then set ak+1=ak, bk+1=ck+1

4. If f(ck+1)f(bk)<0 then set ak+1=ck+1, bk+1=bk

5. Update k and go to Step 2.

➡ Programming hint: For numerical stability, we want to replace
(a+b)/2 with a+(b-a)/2. This is because large values of a,b may
lead to the computational overflow in (a+b)/2.

➡ Each step is decreasing an upper bound on the absolute error by
a factor of 2

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Bisection Convergence and Error Theorem

4

Let [a0,b0]=[a,b] be the initial interval, with f(a)f(b)<0.
If we define an approximate root as Xn=cn=(an-1 + bn-1)/2,
then there exists a root α∈[a,b] s.t.

Moreover, to achieve accuracy of

it suffices to take

|↵� xn| 
1

2n
(b� a)

|↵� xn|  ✏

n � log(b� a)� log ✏

log 2

Marina Krstic Marinkovic / 17 5633-Numerical Methods

5

Bisection Method for root-finding
Bisection method for root-finding

f - user defined function
a - start of an interval
b - end of an interval
nmax - maximal number of steps in the bisection method (divisions of the interval [a,b])
eps - required precision for the root

BisectionMethod <- function(f, a, b, eps, nmax) {
 fa <- f(a) # check if a or b are the root of f(x)
 if (fa == 0.0) {
 return(a)
 }
 fb <- f(b)
 if (fb == 0.0) {
 return(b)
 }

 k=1 # iteration nr. counter
 while ((abs(a-b)>eps)&&(k<nmax))
 {
 x0 <- a+(b-a)/2 # finding midpoint of the interval
 if ((f(a) * f(x0)) < 0)
 b<-x0
 else
 a<-x0
 k<-k+1
 }

 if (k<nmax) {
 print('The found root on the interval [a,b] is:')
 return(x0)
 }
 else
 print('Maximal number of iterations reached and solution not yet found.')
}

Marina Krstic Marinkovic / 17 5633-Numerical Methods

6

f<-function(x)
{
 x**3-2
}

a<-1
b<-2
eps<-1e-10
n<-1000

source(‘BisectionMethod.R’)
NewtonMethod(f,a,b,eps,n)

Bisection Method for root-finding

Marina Krstic Marinkovic / 17 5633-Numerical Methods

Bisection Method

7

➡ Globally convergent method: it always converges no matter
how far from the actual root we start, assuming that the
root is “bracketed” (f(a)f(b)<0)

➡ Disadvantages:

- cannot be used when the function is tangent to the axis
and does not pass through the axis (e.g. f(x)=x2)

- converges slowly compared to other methods

➡ How many iterations is needed in bisection method in order
to decrease the initial error by a factor of ~1000?

Marina Krstic Marinkovic / 17 5633-Numerical Methods

➡ Historically - first used by Newton in 1669

➡ Babylonians also had a method for approximating sqrt(x)

➡ Assume we want to find a root of y=f(x) given an initial guess x0

➡ Newton’s method uses tangent line approximation to f at (x0,f(x0))

Newton’s Method

8Marina Krstic Marinkovic / 17 5633-Numerical Methods

Newton’s Method

9

➡ Tangent line approximation to f at (x0,f(x0))

y � y0

x� x0
= f

0(x0)

➡ Finding where this tangent line crosses the x-axis (y=0)

x = x0 �

f(x0)

f

0(x0)
⌘ x1

➡ Continue the process with another tangent line through f(x1)

➡ And so on - until the new tangent line through f(xn)

…

x2 = x1 �

f(x1)

f

0(x1)

xn+1 = xn � f(xn)

f

0(xn)

Marina Krstic Marinkovic / 17 5633-Numerical Methods

➡ Example: f(x)=2-ex, choosing x0=0

➡ The convergence is much more rapid then the for the bisection

10

Newton’s Method

n xn α-xn log10(α-xn)

0 0.0000000 0.6931472 -0.1591

1 1.000000 0.3068528 -0.5131

2 0.7357589 0.0426117 -1.3705

3 0.6940423 0.0008951 -3.0481

4 0.6931476 0.0000004 -6.3974

5 0.6931472 0.0000000 -13.0553

x1 = x0 �
2� e

x0

�e

x0
= �2� 1

�1
= 1

x2 = x1 �
2� e

x1

�e

x1
= 1� 2� e

�e

= 0.7357588823

x3 = x2 �
2� e

x2

�e

x2
= 0.6940422999

Marina Krstic Marinkovic / 17 5633-Numerical Methods

➡ Study other examples:

➡ f(x)=4/3e2-x/2(1+x-1log(x)), Application of Newton’s method will
be problematic unless the initial guess x0 is chosen very
carefully. What happens in case x0∈[0.8,1.2]?

➡ How about f(x)=arctan(x) - try to apply Newton’s method here,
with initial guess x0=1.39174520027

11

Convergence of Newton’s Method

If f, f’ anf f” are continuous near the root, and if f’ does not equal 0 at the root,
then Newton’s method will converge whenever the initial guess is sufficiently
close to the root.

➡ This convergence will be very rapid (see example on previous
page) —> number of correct digits doubling in every iteration

Marina Krstic Marinkovic / 17 5633-Numerical Methods

12

➡ Disadvantages:

- requires a formula for the derivative of f(x)!

Newton’s Method
➡ Locally convergent method: we have to start the iteration

with a “good enough” approximation to the root, otherwise
the method will not converge

➡ Stopping criterium for the Newton’s method:

➡ Warning! If f’(xn) is very large compared to f(xn), it is
possible to have | xn+1 -xn| small and yet not have xn+1 very
close to α
- common to add a term to the error check:

|f(xn)|+ |xn � xn�1|  ✏/5

5 |xn+1 � xn|  ✏

Marina Krstic Marinkovic / 17 5633-Numerical Methods

13

Newton’s Method for root-finding
Note: other implementation of num. derivative is possible (e.g. backward, symmetric or some predefined function
in R could be used)

f - user defined function
a - start of an interval
b - end of an interval
h - step used in the numerical integration
eps - required precision for the root
n - maximal number of iterations

NumDerivative <- function (f, x0,dx) # computing numerical derivative of a function f
{
 (f(x0+dx)-f(x0))/dx
}
NewtonMethod <- function(f, a, b, eps, n) {
 x0 <- a # setting start value to the interval lower bound
 fa <- f(a) # check if a or b are the root of f(x)
 if (fa == 0.0) {
 return(a)
 }
 fb <- f(b)
 if (fb == 0.0) {
 return(b)
 }
 for (k in 1:n) {
 fprime= NumDerivative(f, x0, dx) # f'(x0)
 x1 = x0 - (f(x0) / fprime) # calculate next value x1
 if (abs(x1 - x0) < eps) { # check if required precision reached
 print('The found root on the interval [a,b] is:')
 return(x1)
 }
 x0 = x1 #continue Newton's method until convergence or max #iter. reached
 }
 print('Maximal number of iterations reached and solution not yet found.')
}

Marina Krstic Marinkovic / 17 5633-Numerical Methods

14

Newton’s Method for root-finding

f<-function(x)
{
 x**3-2
}

a<-1
b<-2
dx<-1e-7
eps<-1e-10
n<-1000

source(‘NewtonMethod.R’)
NewtonMethod(f,a,b,eps,n)

Marina Krstic Marinkovic / 17 5633-Numerical Methods

15

➡ Disadvantage of the Newton’s Method:

- requires a formula for the derivative of f(x)!

Secant Method

➡ Approximate the derivative with “secant line”

➡ two points in the curve needed (instead of just one for the tangent)

➡ Assume two initial guesses are given: x0,x1; f(x0)=f0 f(x1)=f1

Marina Krstic Marinkovic / 17 5633-Numerical Methods

16

Secant Method
➡ Assume two initial guesses are given: x0,x1

➡ The secant line

➡ Setting y=0 and solving for x=x2:

➡ Or, generally:

➡ Consistent with Newton’s method, with approximation:

y � f(x1)

x� x1
=

f(x1)� f(x0)

x1 � x0

x2 = x1 � f(x1)
x1 � x0

f(x1)� f(x0)

xn+1 = xn � f(xn)
xn � xn�1

f(xn)� f(xn�1)

f

0(xn) ⇡
f(xn)� f(xn�1)

xn � xn�1

Marina Krstic Marinkovic / 17 5633-Numerical Methods

17

1. Given two initial guesses x0,x1, and f(x0)=f0 f(x1)=f1 set k=1

2. Compute Xk+1=x1-f1*(x1-x0)/(f1-f0)

3. Compute f(Xk+1); Assign: x0=x1, x1=Xk+1; f0=f1=f(x0),f1=f(Xk+1)

4. If |x1-x0|<tol then set root=x1, exit the loop.

➡ Programming hint: avoid unnecessary function calls in your code!

➡ Less costly than the Newton’s method (one function call per
iteration)

➡ Similar convergence propreties as Newton’s method

➡ Error formula for secant method:

➡ Therefore:

Secant Method

↵� xn+1 =
1

2
(↵� xn)(↵� xn�1)

f

00(⇣n)

f

00(⌘n)

|↵� xn+1| = C|↵� xn||↵� xn�1|, for xn ⇡ ↵, xn+1 ⇡ ↵, xn�1 ⇡ ↵

min{↵, xn, xn�1}  ⇣n, ⌘n  max{↵, xn, xn�1}

Marina Krstic Marinkovic / 17 5633-Numerical Methods

