Numerical Methods 5633

Lecture 4 Michaelmas Term 2017

Marina Krstic Marinkovic mmarina@maths.tcd.ie

School of Mathematics Trinity College Dublin

Marina Krstic Marinkovic

Root Finding

- Finding an argument of a function f(x) that makes y=f(x) zero
- \rightarrow We seek the value α , such that

$$f(\alpha)=0$$

- $\Rightarrow \alpha$ zero of the function f(x)
- $\Rightarrow \alpha$ root of the equation f(x)=0
- \rightarrow f(x) may be a scalar, or a vector-valued function of a vector-valued variable --> solving system of equations
 - Bisection Method
 - Newton's method
 - Secant Method

Marina Krstic Marinkovic

Bisection Method

```
1. Given an initial interval [a<sub>0</sub>,b<sub>0</sub>]=[a,b], set k=0
```

```
2. Compute c_{k+1}=a_k+(b_k-a_k)/2
```

3. If $f(c_{k+1})f(a_k) < 0$ then set $a_{k+1}=a_k$, $b_{k+1}=c_{k+1}$

4. If $f(c_{k+1})f(b_k) < 0$ then set $a_{k+1}=c_{k+1}$, $b_{k+1}=b_k$

5. Update k and go to Step 2.

- Each step is decreasing an upper bound on the absolute error by a factor of 2
- Programming hint: For numerical stability, we want to replace (a+b)/2 with a+(b-a)/2. This is because large values of a,b may lead to the computational overflow in (a+b)/2.

Marina Krstic Marinkovic 3 / 17 5633-Numerical Methods

Bisection Convergence and Error Theorem

Let [a₀,b₀]=[a,b] be the initial interval, with f(a)f(b)<0. If we define an approximate root as $X_n = c_n = (a_{n-1} + b_{n-1})/2$, then there exists a root $\alpha \in [a,b]$ s.t.

$$|\alpha - x_n| \le \frac{1}{2^n}(b-a)$$

Moreover, to achieve accuracy of

$$|\alpha - x_n| \le \epsilon$$

it suffices to take

$$n \ge \frac{\log(b-a) - \log \epsilon}{\log 2}$$

Marina Krstic Marinkovic

Bisection Method for root-finding

```
# Bisection method for root-finding
# f - user defined function
# a - start of an interval
# b - end of an interval
# nmax - maximal number of steps in the bisection method (divisions of the interval [a,b])
# eps - required precision for the root
BisectionMethod <- function(f, a, b, eps, nmax) {</pre>
    fa < - f(a)
                                                # check if a or b are the root of f(x)
    if (fa == 0.0) {
        return(a)
    }
    fb <- f(b)
    if (fb == 0.0) {
        return(b)
    }
                                                # iteration nr. counter
    k=1
    while ((abs(a-b)>eps)&&(k<nmax))</pre>
    {
    x0 < -a+(b-a)/2
                                               # finding midpoint of the interval
    if ((f(a) * f(x0)) < 0)
        b<-x0
    else
        a<-x0
    k < -k+1
    }
    if (k<nmax) {
        print('The found root on the interval [a,b] is:')
        return(x0)
    }
    else
        print('Maximal number of iterations reached and solution not yet found.')
```

Marina Krstic Marinkovic

5 / 17

Bisection Method for root-finding

Marina Krstic Marinkovic

6 / 17

Bisection Method

Globally convergent method: it always converges no matter how far from the actual root we start, assuming that the root is "bracketed" (f(a)f(b)<0)</p>

Disadvantages:

- cannot be used when the function is tangent to the axis and does not pass through the axis (e.g. $f(x)=x^2$)
- converges slowly compared to other methods

How many iterations is needed in bisection method in order to decrease the initial error by a factor of ~1000?

Marina Krstic Marinkovic 7 / 17 5633-Numerical Methods

- ➡ Historically first used by Newton in 1669
- Babylonians also had a method for approximating sqrt(x)
- Assume we want to find a root of y=f(x) given an initial guess x_0
- Newton's method uses tangent line approximation to f at (x₀, f(x₀))

Marina Krstic Marinkovic 8 / 17

Tangent line approximation to f at (x₀, f(x₀))

$$\frac{y-y_0}{x-x0} = f'(x_0)$$

➡ Finding where this tangent line crosses the x-axis (y=0)

$$x = x_0 - \frac{f(x_0)}{f'(x_0)} \equiv x_1$$

 \rightarrow Continue the process with another tangent line through $f(x_1)$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

And so on - until the new tangent line through $f(x_n)$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Marina Krstic Marinkovic

9 / 17

→ Example: $f(x)=2-e^x$, choosing $x_0=0$

$$\begin{aligned} x_1 &= x_0 - \frac{2 - e^{x_0}}{-e^{x_0}} = -\frac{2 - 1}{-1} = 1\\ x_2 &= x_1 - \frac{2 - e^{x_1}}{-e^{x_1}} = 1 - \frac{2 - e}{-e} = 0.7357588823\\ x_3 &= x_2 - \frac{2 - e^{x_2}}{-e^{x_2}} = 0.6940422999 \end{aligned}$$

The convergence is much more rapid then the for the bisection

n	xn	α- x _n	$log_{10}(\alpha-x_n)$
0	0.000000	0.6931472	-0.1591
1	1.000000	0.3068528	-0.5131
2	0.7357589	0.0426117	-1.3705
3	0.6940423	0.0008951	-3.0481
4	0.6931476	0.000004	-6.3974
5	0.6931472	0.000000	-13.0553

Marina Krstic Marinkovic

Convergence of Newton's Method

Study other examples:

- f(x)=4/3e^{2-x/2}(1+x⁻¹log(x)), Application of Newton's method will be problematic unless the initial guess x₀ is chosen very carefully. What happens in case x₀∈[0.8,1.2]?
- How about f(x)=arctan(x) try to apply Newton's method here, with initial guess x₀=1.39174520027

If f, f' anf f" are continuous near the root, and if f' does not equal 0 at the root, then Newton's method will converge whenever the initial guess is sufficiently close to the root.

This convergence will be very rapid (see example on previous page) —> number of correct digits doubling in every iteration

Marina Krstic Marinkovic

11 / 17

- Locally convergent method: we have to start the iteration with a "good enough" approximation to the root, otherwise the method will not converge
- Stopping criterium for the Newton's method:

$$5 |x_{n+1} - x_n| \le \epsilon$$

- \rightarrow Warning! If f'(x_n) is very large compared to f(x_n), it is possible to have $|x_{n+1} - x_n|$ small and yet not have x_{n+1} very close to α
 - common to add a term to the error check:

$$|f(x_n)| + |x_n - x_{n-1}| \le \epsilon/5$$

Disadvantages:

- requires a formula for the derivative of f(x)!

Marina Krstic Marinkovic

Newton's Method for root-finding

Note: other implementation of num. derivative is possible (e.g. backward, symmetric or some predefined function in R could be used)

```
# f - user defined function
# a - start of an interval
# b - end of an interval
# h - step used in the numerical integration
# eps - required precision for the root
# n - maximal number of iterations
NumDerivative <- function (f, x0,dx) # computing numerical derivative of a function f
    (f(x0+dx)-f(x0))/dx
NewtonMethod <- function(f, a, b, eps, n) {</pre>
  x0 <- a
                                                     # setting start value to the interval lower bound
                                                     # check if a or b are the root of f(x)
  fa < -f(a)
  if (fa == 0.0) {
    return(a)
  }
  fb < -f(b)
  if (fb == 0.0) {
    return(b)
  }
  for (k in 1:n) {
    fprime= NumDerivative(f, x0, dx)  # f'(x0)
x1 = x0 - (f(x0) / fprime)  # calculate next value x1
if (abs(x1 - x0) < eps) {  # check if required precision reached</pre>
      print('The found root on the interval [a,b] is:')
      return(x1)
    }
                                                     #continue Newton's method until convergence or max #iter. reached
    x0 = x1
  print('Maximal number of iterations reached and solution not yet found.')
```

Newton's Method for root-finding

Marina Krstic Marinkovic

14 / 17

Secant Method

Disadvantage of the Newton's Method:

- requires a formula for the derivative of f(x)!
- Approximate the derivative with "secant line"
- two points in the curve needed (instead of just one for the tangent)
 Assume two initial guesses are given: x₀,x₁; f(x₀)=f₀ f(x₁)=f₁

Marina Krstic Marinkovic 15 / 17 5633-Numerical Methods

Secant Method

➡ Assume two initial guesses are given: x₀, x₁

The secant line

$$\frac{y - f(x_1)}{x - x_1} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

→ Setting y=0 and solving for $x=x_2$:

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

➡ Or, generally:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Consistent with Newton's method, with approximation:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Marina Krstic Marinkovic

16 / 17

Secant Method

1. Given two initial guesses x_0, x_1 , and $f(x_0)=f_0 f(x_1)=f_1$ set k=1

2. Compute
$$X_{k+1}=x_1-f_1*(x_1-x_0)/(f_1-f_0)$$

- 3. Compute $f(X_{k+1})$; Assign: $x_0=x_1$, $x_1=X_{k+1}$; $f_0=f_1=f(x_0)$, $f_1=f(X_{k+1})$
- 4. If $|x_1-x_0| < tol$ then set root= x_1 , exit the loop.
 - Less costly than the Newton's method (one function call per iteration)
 - Similar convergence propreties as Newton's method
 - Error formula for secant method:

$$\alpha - x_{n+1} = \frac{1}{2} (\alpha - x_n) (\alpha - x_{n-1}) \frac{f''(\zeta_n)}{f''(\eta_n)} \quad \min\{\alpha, x_n, x_{n-1}\} \le \zeta_n, \eta_n \le \max\{\alpha, x_n, x_{n-1}\}$$

Therefore:

$$|\alpha - x_{n+1}| = C|\alpha - x_n||\alpha - x_{n-1}|, \quad \text{for } x_n \approx \alpha, x_{n+1} \approx \alpha, x_{n-1} \approx \alpha$$

Programming hint: avoid unnecessary function calls in your code!

 Marina Krstic Marinkovic
 17 / 17
 5633-Numerical Methods