
M.Sc. in High-Performance Computing
5633 - Numerical Methods

Assignment 2

Marina Krstic Marinkovic
(mmarina@maths.tcd.ie)

School of Mathematics, TCD

Rules

To submit, make a single tar-ball with all your code and a pdf of any written part
you want to include. Submit this via msc.tchpc.tcd.ie or via email to mmarina@
maths.tcd.ie by the end of Friday January 20th. Instead of R, you may use Matlab
or Python for the numerical/plotting part. Late submissions without prior arrange-
ment or a valid explanation will result in reduced marks.

�estion

1. (10p) Write an R code that does LU factorisation with partial pivoting for an
arbitrary n×nmatrix (n<100). Use it to solve the systems of equationsAx = b:

(a) A =


9 3 2 0 7
7 6 9 6 4
2 7 7 8 2
0 9 7 2 2
7 3 6 4 3

, b = [35, 58, 53, 37, 39]T ;

(b) A = H5, b = [5.0, 3.550, 2.81428571428571, 2.34642857142857, 2.01746031746032]T ;
(c) A = A5, b = [−4,−7,−6,−5, 16]T ,

where Hn and An denote the families of matrices parameterised by their di-
mension in the following way:

Hn = [hij], hij =
1

i+ j − 1
,

An = [aij], aij =


1, i = j;

4, i− j = 1;

−4, i− j = −1;
0, otherwise.

In each case, have your code multiply out the L and U factors to check that the
routine is working properly.

2. (5p) Use the algorithm for the condition number estimator studied in class to
produce a plot of κ∗ versus n for the matrix families from the previous question:

(a) Hn, 4 ≤ n ≤ 20;
(b) An, 4 ≤ n ≤ 20.

3. (10p) Let A be the following 16× 16 matrix:

A =



−4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 −4 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 −4 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 −4 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 −4 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 −4 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 −4 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 −4 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 −4 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 −4 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 −4 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −4


Write an R code that applies Jacobi and Gauss-Seidel iterative solver on the
system of equations Ax=b, where

b = [5, 11, 18, 21, 29, 40, 48, 48, 57, 72, 80, 76, 69, 87, 94, 85]T .

Try to make the code as e�cient as possible, e.g. by only storing the nonzero
diagonals of A.

4. (15p) Write an R code that solves the following initial value problems (IVP):

i) y′ = −y ln y, y(0) = 1
2
;

ii) y′ + 4y = 1, y(0) = 1;
iii) y′ = y, y(0) = 1,

using forward Euler’s method.

(a) For each of the IVP above, approximate the solution using a sequence of
decreasing grids n = h−1 = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. Find
an analytic solution of the problem and compare the accuracy achieved
with the Euler’s method over the interval [0,1] to the theoretical accuracy
by computing the error over the interval:

En = max
k≤n
|y(tk)− yk|,

2

where y(tk) is the analytic solution of the di�erential equation evaluated
at a grid point tk = t0 + kh, k = 0, . . . , n. Write out your �ndings in a
text �le forward_{i}.txt of the format:

n = h−1 yn(t = 1) En,

where i=1,2,3 for each of the IVP given above.
(b) Modify your code to include trapezoid rule predictor-corrector method

and apply it to the IVP i). Write out your result in a �le named implicit.txt
of the same format as before:

n = h−1 yn(t = 1) En,

for n = h−1 = 2, 4, 8, . . . , 1024. Comment on the order of accuracy of
this method, compared to the ordinary (forward) Euler’s method imple-
mented in part a).

(c) Solve the same IVP i) using a second and a fourth order Runge-Kutta
method and write the output in the �le rungekutta.txt of the format:

n = h−1 RK2 yn(t = 1) RK2 En RK4 yn(t = 1) RK4 En

Plot the analytic solution of the IVP i) on the interval [0,1], along with
the 2nd and 4th order RK approximate values for h = 1

4
.

3

