Numerical Methods 5633

Lecture 9

Marina Krstic Marinkovic mmarina@maths.tcd.ie

School of Mathematics Trinity College Dublin

Organisational

	To appear	Submission DL
Assignment 1	14.10	04.11
Assignment 2	04.11	23.11
Assignment 3	25.11	09.12
<pre>→ Last 2 weeks</pre> → 17.11/24.11 (- Thurs. (+Fri.) 14.30-16.10h)	lectures

Solving linear algebraic equations

- ➡ How is the matrix solution process affected by the changes of the problem?
- If the small change in the problem produces the large change in the solution:
 - is it due to small perturbation of the problem?
 - or due to the instability in the computational scheme?

- ➡ Iterative methods for linear systems
 - Iterations, Jacobi, Gauss-Seidel
 - Sparse matrix solvers

Estimating the condition number

- If the solution to a linear system changes a great deal when the problem changes only very slightly, then we suspect that the matrix is ill-conditioned
- Recall the definition (infinity norm, next slide):

$$\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$$

→ Computing $||\mathbf{A}||_{\infty}$ not hard, computing $||\mathbf{A}^{-1}||_{\infty}$ is! (if A is ill-conditioned, computing A^{-1} will be unreliable)

Vector and matrix norms

<u>Definition 2:</u> Let $|\cdot|$ be a given vector norm on \mathbb{R}^n . A corresponding matrix norm for matrices $A \in \mathbb{R}^{n \times n}$ is defined by:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

Consequences of this definition of operator (matrix) norm:

$$||AB| \le |||A||||B||$$
 and $||Ax| \le |||A||||x||$

- Not necessary to associate matrix norm with a particular vector one
 - Matrix infinity norm:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Matrix 2-norm:

$$||A||_2 = \sqrt{\Lambda(A^T A)}$$

 $\Lambda(B)$ is the largest (in abs. value) eigenvalue of the matrix B

Estimating condition number

Algorithm for estimating the condition number, given LU factorisation of A

- 1. Compute $\alpha = ||\mathbf{A}||_{\infty}$
- 2. Take a random initial guess $\mathbf{y}^{(0)}$
- 3. Compute $\mathbf{y}^{(5)}$ in the sequence defined by

$$y^{(i+1)} = \frac{A^{-1}y^{(i)}}{||y^{(i)}||_{\infty}}, \qquad i = 0, 1, \dots, 4$$

by solving the systems using the exact factorisation of A, and set $v=||y^{(5)}||_{\infty}$.

- 4. Set $K^* = \alpha v$.
 - Homework: write an R code determining the condition number
 - Check with predefined R routine: library('Matrix'); condnr<-1/(rcond(a,norm = c("I")))</pre>

Iterative methods for linear systems

Theorem 1: Let $A \in \mathbb{R}^{n \times n}$ be a given matrix and we define T=MN, where A=M-N. Then the iteration

$$x^{(n+1)} = M^{-1}Nx^{(n)} + M^{-1}b$$

converges for all initial guesses $\mathbf{x}^{(0)}$ if and only if there exists a norm $||\cdot||$ such that $\|\mathbf{T}\| < 1$.

Definition 1: Let $A \in \mathbb{R}^{n \times n}$ be a given matrix. Then the spectral radius of a matrix A, $\rho(A)$, is the largest (in magnitude) of all the eigenvalues of A:

$$\rho(A) = \max |\lambda|$$

where the maximum is taken over all the eigenvalues of A.

Theorem 2: Let $A \in \mathbb{R}^{n \times n}$ be a given matrix. Then there exists a norm such that $||\mathbf{T}|| < 1$ if and only if the spectral radius satisfies $\rho(\mathbf{A}) < 1$.

→ The iteration converges for all initial guesses $x^{(0)} \Leftrightarrow \rho(M^{-1}N) < 1$

Jacobi iteration

$$A = D - (D - A)$$
$$x^{(n+1)} = (\mathbb{I} - D^{-1}A)x^{(n)} + D^{-1}b$$

Gauss-Seidel iteration

$$A = L - (L - A)$$
$$x^{(n+1)} = (\mathbb{I} - L^{-1}A)x^{(n)} + L^{-1}b$$

Jacobi iteration

$$A = D - (D - A)$$
$$x^{(n+1)} = (\mathbb{I} - D^{-1}A)x^{(n)} + D^{-1}b$$

```
A=t(matrix(c(4,1,0,0,1,5,1,0,0,1,6,1,1,0,1,4),

nrow=4,ncol=4))

b=c(1,7,16,14)

p=c(0,0,0,0)

xp=c(0,0,0,0)

epsilon=1e-06

max1=100
```

```
# R code for the solution of the system Ax=b using
Jacobi iteration
# Input
            - A is an n x n nonsingular matrix
            - b is an n x 1 matrix (solution vector)
            - p is an n x 1 matrix (the initial guess)
            - epsilon is the tolerance for the
solution P
            - max1 is the maximum number of iterations
# Output
            - x is an n x 1 matrix: the Jacobi
approximation to
             the solution of Ax = b
n = length(b);
norm vec infty \leftarrow function(x) max(x)
for (k in 1:max1)
    p=xp;
    for (j in 1:n)
        xp[i]=p[i]+(b[i]-A[i,]%*%p)/A[i,i];
    err=abs(norm vec infty(xp-p));
    relerr=err/(abs(norm vec infty(xp));
    if (err<epsilon) #(relerr<epsilon)</pre>
        break;
x=xp;
```