Numerical Methods 5633

Lecture 8

Marina Krstic Marinkovic mmarina@maths.tcd.ie

School of Mathematics Trinity College Dublin

Organisational

	To appear	Submission DL
Assignment 1	14.10	04.11
• Assignment 2	04.11	18.11
• Assignment 3	25.11	09.12
→ Last 2 weeks ·	- Thurs. (+Fri.) led	ctures
→ 17.11/24.11 (:	14.30-16.10h)	

Solving linear algebraic equations

- ➡ How is the matrix solution process affected by the changes of the problem?
- → If the small change in the problem produces the large change in the solution:
 - is it due to small perturbation of the problem?
 - or due to the instability in the computational scheme?

- → Recall some linear algebra
 - Vector and Matrix norms
 - Perturbations, conditioning, stability

Vector and matrix norms

<u>Definition 1:</u> A vector norm on \mathbb{R}^n is any mapping $||\cdot||$, defined on \mathbb{R}^n , defined on with values in $[0,\infty)$, which satisfies the conditions:

- 1. ||x|| > 0 for any vector $\mathbf{x} \neq \mathbf{0}$;
- 2. ||ax|| = ||a|| ||x|| for any scalar a;
- 3. $||x+y|| \le ||x|| + ||y||$ for any two vectors $\mathbf x$ and $\mathbf y$;
- Examples of vector norms:
 - Infinity norm:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Euclidean 2-norm:

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$$

Vector and matrix norms

<u>Definition 2:</u> Let $|\cdot|$ be a given vector norm on \mathbb{R}^n . A corresponding matrix norm for matrices $A \in \mathbb{R}^{n \times n}$ is defined by:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

Consequences of this definition of operator (matrix) norm:

$$||AB| \le |||A||||B||$$
 and $||Ax| \le |||A||||x||$

- Not necessary to associate matrix norm with a particular vector one
 - Matrix infinity norm:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Matrix 2-norm:

$$||A||_2 = \sqrt{\Lambda(A^T A)}$$

 $\Lambda(B)$ is the largest (in abs. value) eigenvalue of the matrix B

Condition number

<u>Definition 3:</u> For a given matrix $A \in \mathbb{R}^{n \times n}$ and a given matrix norm $|| \cdot ||$, the **condition number** with respect to the given norm is defined by:

$$\kappa(A) = ||A||||A^{-1}||$$

If A is singular, then we take $K(A)=\infty$.

Theorem 1: Let $A \in R^{n \times n}$ be a given nonsingular matrix. Then, for any singular matrix $B \in R^{n \times n}$ holds:

$$\frac{1}{\kappa(A)} \le \frac{||A - B||}{||A||}$$

Effects of perturbations

→ in b:

Theorem 2: Let $A \in R^{n \times n}$ be a given nonsingular matrix and $b \in R^n$. Let us also define $x \in R^n$ as the solution of the linear system Ax = b and let $\delta b \in R^n$ be a small perturbation of b. If we define $x + \delta x \in R^n$ as the solution of the system $A(x + \delta x) = b + \delta b$ then

$$\frac{||\delta x||}{||x||} \le \kappa(A) \frac{||\delta b||}{||b||}$$

→ in A:

<u>Theorem 3:</u> Let $A \in \mathbb{R}^{n \times n}$ be a given nonsingular matrix and let $E \in \mathbb{R}^{n \times n}$ be a perturbation of A. Let $x \in \mathbb{R}^n$ be a unique solution of Ax = b. If then the perturbed system (A+E)xc=b has a unique solution and

$$\frac{||x - x_c||}{||x||} \le \frac{\theta}{1 - \theta}, \quad \text{where } \theta = \kappa(A) \frac{||E||}{||A||}.$$

Estimating the condition number

- If the solution to a linear system changes a great deal when the problem changes only very slightly, then we suspect that the matrix is ill-conditioned
- ➡ Recall the definition (infinity norm):

$$\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$$

→ Computing $||\mathbf{A}||_{\infty}$ not hard, computing $||\mathbf{A}^{-1}||_{\infty}$ is! (if A is ill-conditioned, computing \mathbf{A}^{-1} will be unreliable)

Estimating condition number

Algorithm for estimating the condition number, given LU factorisation of A

- 1. Compute $\alpha = ||A||_{\infty}$
- 2. Take a random initial guess $\mathbf{y}^{(0)}$
- 3. Compute $\mathbf{y}^{(5)}$ in the sequence defined by

$$y^{(i+1)} = \frac{A^{-1}y^{(i)}}{||y^{(i)}||_{\infty}}, \qquad i = 0, 1, \dots, 4$$

by solving the systems using the exact factorisation of A, and set $v=\|\mathbf{y}^{(5)}\|_{\infty}$.

4. Set $\kappa^* = \alpha v$.