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Rules

The deadline for submission is Friday, April 20th at 2pm. Please numerate your
homework solutions, add your student ID to each page and submit via email to: mma-
rina@maths.tcd.ie, cc-ing obries39@tcd.ie, specifying as a subject: [MA22S4 -
Tutorial 4 submission]. If you would prefer to hand in in person, please email
us and we will make a special arrangement for your submission. Late submissions
will not be accepted. The solutions will be published online after this �nal submis-
sion deadline, in order to help you prepare for the exam (taking place on 19/05/2018).

Attempt parts b) d) e),g), h) �rst. These already amount to 100p. Solving
remaining parts is optional – it will bring you bonus points, which can make up for
the ponts lost in tutorials 1-3.

�estions

1. Consider a particle moving in a constant magnetic �eld. We have learned in
class that its potential can be written as

V (~r) = q~̇r · ~A(~r)− qφ(~r)

where ~A(~r) is the vector potential, φ(~r) is the scalar potential and q is the
charge of the particle.

(a) Knowing that ~B = ∇× ~A and ~E = −∇φ− ∂ ~A
∂t

, prove that

~F = −q( ~E + ~̇r × ~B)

Hint 1: Prove that the above holds for the x-component of the force. The
proof for y- and z-component is equivalent and there is no need to write
those down.
Hint 2: Use the known relation between force and potential: Fi = −∂V

∂qi
+

d
dt
(∂V
∂q̇i

). [20]



(b) Write the Lagrangian function and the Euler-Lagrange equations of mo-
tion using 3-d Cartesian coordinates. Hint: Since themagnetic �eld is given
to be constant in this assignment, assuming e.g. ~B = Bẑ.will simplify the
calculation signi�cantly. Use this to �nd explicit form of ~A. [20]

(c) Write the Lagrangian function and the Euler-Lagrange equations of mo-
tion using cylindrical coordinates. Hint: Starting point same as in (a). [20]

(d) Condider adding any function of the generalized coordinates F to the
obtained lagrangian L. Show that the Lagrangian functions L and L′ =
L+ dF

dt
yield the same equations of motion.

Hint 1: Use Hamilton’s principle. [40]
(e) Find the generalized momenta and the Hamiltonian function using 3-d

Cartesian coordinates. Hint: Use same starting point and �ndings from
part (b). [20]

(f) Find the generalized momenta and the Hamiltonian function using cylin-
drical coordinates. Hint: Use same starting point and �ndings from part
(c). [20]

(g) Compare the physical and generalized momenta for θ coordinate direc-
tion. [10]

(h) Is the total energy conserved? Explain why is this the case. [10]
(i) Assume that the electromagnetic �eld is homogenious and constant, in

particular:

~B = Bz ẑ and ~E = Ez ẑ.

Find the trajectory of a particle of mass m and charge q for given bound-
ary conditions:

~r(0) = 0 and ~̇r = v0x̂.

[40]
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