M.Sc. in High-Performance Computing 5613 - C programming Assignment 4

Marina Krstic Marinkovic (mmarina@maths.tcd.ie) School of Mathematics, TCD

Rules

To submit, make a single tar-ball with all your code and a pdf of any written part you want to include. Submit this via msc.tchpc.tcd.ie by the end of **Tuesday November 15th**. Attempt all parts. Marks will be given for the efficiency of your implementation. Late submissions without prior arrangement or a valid explanation will result in reduced marks.

QUESTION

- (a) (5p) Write a C structure typedef struct Tridiag_s {...} Tridiag; that will store a square tridiagonal N×N matrix, T efficiently. A tridiagonal matrix has non-zero entries T_{ij} only when i and j differ by at most one. The matrix element T_{ij} should be referenced by the syntax t.entry[i][j] (assuming i and j differ by only one).
 - (b) (5p) Write a function

void tridiag_mul(Tridiag* t, double* a, double *b)

that applies the tridiagonal matrix stored in t to a vector whose elements are stored in array a, writing the answer in array b. Test it by evaluating the matrix-vector product

(4.0	-1.7	0	0	0 `		(2.3)
	1.4	5.6	-1.3	0	0		-4.4
	0	-0.8	3.2	1.8	0		7.9
	0	0	0.4	2.3	-1.2		-0.1
	0	0	0	1.8	4.6	/ /	5.9

(c) (10p) Write a C-code that computes an inverse of a non-singular tridiagonal matrix. The tridiagonal matrix is read from a text file tridiag_matrix.txt containing in the first line a size of the matrix N and in the next line only (3N-2) relevant elements of the tridiagonal matrix. For the previous example, the input file would contain the following entries:

Write the output matrix to the output file inverse.txt. If the resulting inverse matrix $N \times N$ is denoted with $M_{n \times n} = T_{n \times n}^{-1}$, than the output file should have N+1 lines, and a format:

N $m_{0,0} m_{0,1} \dots m_{0,n-1}$ \dots $m_{n-1,0} m_{n-1,1} \dots m_{n-1,n-1}$