
Marina Krstic Marinkovic / 10 5613 - C programming

C programming
5613

Lecture 7

School of Mathematics
Trinity College Dublin

Marina Krstic Marinkovic
mmarina@maths.tcd.ie

Marina Krstic Marinkovic / 10 5613 - C programming

School of Mathematics
Trinity College Dublin

1

mailto:marina.marinkovic@cern.ch?subject=

Timing the execution of your code

2Marina Krstic Marinkovic / 10 5613 - C programming

//Piece of code for measuring the time spent in a calling process

#include <time.h>

clock_t start, end;
double cpu_time_used;

start = (double)clock();
... /* Do the work. */
end = (double)clock();
cpu_time_used = (end - start) / (double)CLOCKS_PER_SEC;

➡ CPU time consumed by the calling process between the two calls

➡ clock_t clock(void) - values of type clock_t are numbers of clock ticks

➡ int CLOCKS_PER_SEC - number of clock ticks per second measured by the
clock() function

➡ Main CPU-Time page: https://www.gnu.org/savannah-checkouts/gnu/libc/
manual/html_node/CPU-Time.html

https://www.gnu.org/savannah-checkouts/gnu/libc/manual/html_node/CPU-Time.html

3Marina Krstic Marinkovic / 10 5613 - C programming

/*Timing the insertion sort algorithm*/
#include<stdio.h>
#include<time.h>
int main()
{
 int data[100],n,temp,i,j;
 double t1,t2,dt;

 printf("Enter number of terms(should be less than 100): ");
 scanf("%d",&n);
 printf("Enter elements: ");
 for(i=0;i<n;i++)
 {
 scanf("%d",&data[i]);
 }
 t1=(double)clock();
 for(i=1;i<n;i++)
 {
 temp = data[i];
 j=i-1;
 while(temp<data[j] && j>=0)
 /*To sort elements in descending order, change temp<data[j]
to temp>data[j] in above line.*/
 {
 data[j+1] = data[j];
 --j;
 }
 data[j+1]=temp;
 }
 t2=(double)clock();
 dt=(t2-t1)/(double)(CLOCKS_PER_SEC);

 printf("In ascending order: ");
 for(i=0; i<n; i++)
 printf("%d\t",data[i]);
 printf("\nTime needed to sort the array: %.2e sec\n",dt);
 return 0;

Timing the execution of insertion sort

Data I/O from/to files in C

4Marina Krstic Marinkovic / 10 5613 - C programming

//File type
FILE *fptr1, *fptr2, *fptr;

//Opening a file for creation/edit:
fptr = fopen("fileopen","mode")

//Creating a new file
fptr1=fopen("oldinput.txt","r");

//Opening an existing file
fptr1=fopen("newinput.txt","wa");

//Closing a file
fclose(fptr1);
fclose(fptr2);
fclose(fptr);

//Reading information from a text file
fscanf(fptr,"%d",&num);
fscanf(fptr,"%d\n",&num);

//Writing information to a text file
int num;
double entry;
fprintf(fptr,"%d",num);
fprintf(fptr,"%.4f",entry);

//Reading information from a binary file
threeNum num;
fread(&num, sizeof(struct threeNum), 1, *fptr);

//Writing information to a binary file
threeNum num;
fwrite(&num, sizeof(struct threeNum), 1, *fptr);

➡ Two most commonly used types of files: text(.txt) and binary(.bin) files

➡ .txt - intuitive, easy to read and edit/delete

➡ .bin - can hold higher amount of data, not easily readable and provide
a better security than text files

Data I/O from/to files in C

5Marina Krstic Marinkovic / 10 5613 - C programming

File Mode Meaning of Mode During Inexistence of file

r Open for reading. If the file does not exist, fopen() returns NULL.

rb Open for reading in binary mode. If the file does not exist, fopen() returns NULL.

w Open for writing. If the file exists, its contents are overwritten. If
the file does not exist, it will be created.

wb Open for writing in binary mode. If the file exists, its contents are overwritten. If
the file does not exist, it will be created.

a Open for append. i.e, Data is added to
end of file. If the file does not exists, it will be created.

ab Open for append in binary mode. i.e,
Data is added to end of file. If the file does not exists, it will be created.

r+ Open for both reading and writing. If the file does not exist, fopen() returns NULL.

rb+ Open for both reading and writing in
binary mode. If the file does not exist, fopen() returns NULL.

w+ Open for both reading and writing. If the file exists, its contents are overwritten. If
the file does not exist, it will be created.

wb+ Open for both reading and writing in
binary mode.

If the file exists, its contents are overwritten. If
the file does not exist, it will be created.

a+ Open for both reading and appending. If the file does not exists, it will be created.

ab+ Open for both reading and appending in
binary mode. If the file does not exists, it will be created.

Sort an array read from a file

6Marina Krstic Marinkovic / 10 5613 - C programming

/* Sorting Elements of an array in ascending order using insertion sort algorithm*/
/* The elements of an array are read from a file, where the first. */
#include<stdio.h>
#include<time.h>
#include<stdio.h>
#include<time.h>
void insertsort(int *arr,int n)
{
 int i,j,temp;
 for(i=1;i<n;i++)
 {
 temp = arr[i];
 j=i-1;
 while(temp<arr[j] && j>=0)
 {
 arr[j+1] = arr[j];
 j—;
 }
 arr[j+1]=temp;
 }
}
int main()
{
 int data[10000],n,temp,i,j;
 double t1,t2,dt;
 FILE *fptr1,*fptr2;

 fptr1 = fopen("array.txt","r");
 fptr2 = fopen("sorted.txt","w");
 fscanf(fptr1,"%d",&n); //Reading number of terms in an array
 if (n>10000) //Maximal size of an array is 10000
 printf("The number of elements cannot be larger than 10000. Please modify the input file");

 for(i=0;i<n;i++) //proceeding to read the elements of an array
 {
 fscanf(fptr1,"%d",&data[i]);
 }
 t1=(double)clock();
 insertsort(data,n);
 t2=(double)clock();
 dt=(t2-t1)/(double)(CLOCKS_PER_SEC);

 for(i=0; i<n; i++)
 fprintf(fptr2,"%d\n",data[i]);
 fprintf(fptr2,"\nTime needed to sort the array: %.2e sec\n",dt);

 fclose(fptr1);
 fclose(fptr2);
 return 0;
}

Sorting the array: quick sort

7Marina Krstic Marinkovic / 10 5613 - C programming

➡ “divide-and-conquer” strategy

➡ Choose a pivot value: e.g. the value of the middle element as
pivot value, but it can be any value, which is in range of
sorted values, even if it doesn't present in the array

➡ Partition: Rearrange elements in such a way, that all elements
which are lesser than the pivot go to the left part of the
array and all elements greater than the pivot, go to the right
part of the array. Values equal to the pivot can stay in any
part of the array. Notice: the array may be divided in non-
equal parts

➡ Sort both parts: Apply quick sort algorithm recursively to the
left and the right parts

Quick sort vs. insertion sort

8Marina Krstic Marinkovic / 10 5613 - C programming

void quicksort(int *arr, int low, int high)
{
 int pivot, i, j, temp;
 if(low < high) {
 pivot = low; // select a pivot element
 i = low;
 j = high;
 while(i < j) // increment i until you get a number > than the pivot element
 {
 while(arr[i] <= arr[pivot] && i <= high) //decrement j until getting a number < pivot element
 i++;
 while(arr[j] > arr[pivot] && j >= low)
 j--;
 // if i < j swap the elements in locations i and j
 if(i < j)
 {
 temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
 }
 }
 // when i >= j it means the j-th position is the correct position
 // of the pivot element, hence swap the pivot element with the
 // element in the j-th position
 temp = arr[j];
 arr[j] = arr[pivot];
 arr[pivot] = temp;

 quicksort(arr, low, j-1); // Repeat quicksort for the two sub-arrays, one to the left of j
 quicksort(arr, j+1, high); // and one to the right of j
 }
}

➡ Compare the execution times between quick and insertion sort

➡ For: n=10,100,1000,10000

Example from Lecture 6:

9Marina Krstic Marinkovic / 10 5613 - C programming

➡ alternatively: use header file <string.h> and predefined function:

➡ size_t strlen(const char *str)

#include <stdio.h>
void bubblesort(char string[],int n)
{
 int step,i;
 char temp;

 for(step=0;step<n-1;step++)
 for(i=0;i<n-step-1;i++)
 {
 if(string[i]>string[i+1])
 {
 temp=string[i];
 string[i]=string[i+1];
 string[i+1]=temp;
 }
 }
}
int main()
{
 char s[] = "the quick brown fox jumps over the lazy dog"; //string to sort
 char c;
 int i,length;

 length=0;
 i=0;
 while ((s[i])!='\0') //counting the length of the string
 {
 length++;
 i++;
 }
 bubblesort(s,length); //sorting the string (array of characters)
 printf("%s\n",s);
}

Example to read text from a file:

10Marina Krstic Marinkovic / 10 5613 - C programming

➡ checking whether the input file (file to be read in) exists and can
be opened

➡ reading text from file until newline is reached

#include <stdio.h>
#include <stdlib.h> // For exit() function
int main()
{
 char c[1000];
 FILE *fptr;

 if ((fptr = fopen("input.txt", "r")) == NULL)
 {
 printf("Error! opening file"); // Program exits if file pointer
returns NULL.
 exit(1);
 }

 // reads text until newline
 fscanf(fptr,"%[^\n]", c);

 printf("Data from the file:\n%s\n”, c);
 fclose(fptr);

 return 0;
}

