
CUDAClub

Mike Peardon

School of Mathematics
Trinity College Dublin

CUDA
CUDA

January 13, 2009

Mike Peardon (TCD) CUDAClub January 13, 2009 1 / 15

Disclaimer:
I don’t know anything about CUDA

which is why I’m at this journal club

http://www.nvidia.com/object/cuda home.html
http://www.nvidia.com/object/cuda develop.html

Mike Peardon (TCD) CUDAClub January 13, 2009 2 / 15

What is CUDA?

Compute Unified Device Architecture

Extension to C programming language

Adds library functions to access to GPU

Adds directives to translate C into instructions that run on the host
CPU or the GPU when needed

Allows easy multi-threading - parallel execution on all thread
processors on the GPU

Mike Peardon (TCD) CUDAClub January 13, 2009 3 / 15

What is a GPU?

Graphics Processing Unit

Processor dedicated to rapid rendering of polygons - texturing,
shading

They are mass-produced, so very cheap 1 Tflop peak ≈ EU 1k.

They have lots of compute cores, but a simpler architecture cf a
standard CPU

The “shader pipeline” can be used to do floating point calculations

−→ cheap scientific/technical computing

Mike Peardon (TCD) CUDAClub January 13, 2009 4 / 15

Will CUDA work on my PC/laptop?

CUDA works on modern nVidia cards (Quadro, GeForce, Tesla)

See
http://www.nvidia.com/object/cuda learn products.html

Mike Peardon (TCD) CUDAClub January 13, 2009 5 / 15

nVidia’s compiler - nvcc

CUDA code must be compiled using nvcc

nvcc generates both instructions for host and GPU (PTX instruction
set), as well as instructions to send data back and forwards between
them

Standard CUDA install; /usr/local/cuda/bin/nvcc

Shell executing compiled code needs dynamic linker path
LD LIBRARY PATH environment variable set to include
/usr/local/cuda/lib

. . . and that’s it!

Probably can even get around this . . .

Mike Peardon (TCD) CUDAClub January 13, 2009 6 / 15

Simple overview

MemoryMemory

CPU GPU

PCI bus

Disk, etc

Network,

GPU can’t directly access main memory

CPU can’t directly access GPU memory

Need to explicitly copy data

No printf!

Mike Peardon (TCD) CUDAClub January 13, 2009 7 / 15

Very simple example - A CUDA “hello world”

#include <stdio.h>
int main()
{
int i,n;
struct cudaDeviceProp x;

cudaGetDeviceCount(&n);
printf("Found %d CUDA-enabled devices\n",n);

for (i=0;i<n;i++)
{
cudaGetDeviceProperties(&x, i);
printf("GPU %d <%s> has %d multi-processors \n",

i, x.name, x.multiProcessorCount);
}

}

Mike Peardon (TCD) CUDAClub January 13, 2009 8 / 15

Very simple example - A CUDA “hello world”

Output on pasanda is:

Found 2 CUDA-enabled devices
GPU 0 <Tesla C1060> has 30 multi-processors
GPU 1 <Quadro NVS 290> has 2 multi-processors

A multi-processor has 8 thread processors

Mike Peardon (TCD) CUDAClub January 13, 2009 9 / 15

Writing some code (1) - specifying where code runs

CUDA provides function type qualifiers (that are not in C/C++) to
enable programmer to define where a function should run

host : specifies the code should run on the host CPU (redundant
on its own - it is the default)

device : specifies the code should run on the GPU, and the
function can only be called by code running on the GPU

global : specifies the code should run on the GPU, but be called
from the host - this is the access point to start multi-threaded codes
running on the GPU

Device can’t execute code on the host!

CUDA imposes some restrictions, such as device code is C-only (host
code can be C++), device code can’t be called recursively...

Mike Peardon (TCD) CUDAClub January 13, 2009 10 / 15

Writing some code (2) - launching a global function

All calls to a global function must specify how many threaded
copies are to launch and in what configuration.
CUDA syntax: <<< >>>
threads are grouped into thread blocks then into a grid of blocks
This defines a memory heirarchy (probably important for performance)

Mike Peardon (TCD) CUDAClub January 13, 2009 11 / 15

Writing some code (3) - launching a global function

Inside the <<< >>>, need at least two arguments (can be two more,
that have default values)

Call looks eg. like my func<<<bg, tb>>>(arg1, arg2)

bg specifies the dimensions of the block grid and tb specifies the
dimensions of each thread block

bg and tb are both of type dim3 (a new datatype defined by CUDA;
three unsigned ints where any unspecified component defaults to 1).

dim3 has struct-like access - members are x, y and z

CUDA provides constructor: dim3 mygrid(2,2); sets mygrid.x=2,
mygrid.y=2 and mygrid.z=1

1d syntax allowed: myfunc<<<5, 6>>>() makes 5 blocks (in linear
array) with 6 threads each and runs myfunc on them all.

Mike Peardon (TCD) CUDAClub January 13, 2009 12 / 15

Writing some code (4) - built-in variables on the GPU

For code running on the GPU (device and global), some
variables are predefined, which allow threads to be located inside their
blocks and grids

dim3 gridDim Dimensions of the grid.

uint3 blockIdx location of this block in the grid.

dim3 blockDim Dimensions of the blocks

uint3 threadIdx location of this thread in the block.

int warpSize number of threads in the warp?

Mike Peardon (TCD) CUDAClub January 13, 2009 13 / 15

Example 2 - vector adder

Start:
#include <stdlib.h>

#include <stdio.h>

#define N 1000

#define NBLOCK 10

#define NTHREAD 10

Now define the kernel to execute on the host

__global__
void adder(int n, float* a, float *b)
// a=a+b - thread code - add n numbers per thread
{
int i,off = (N * blockIdx.x) / NBLOCK +
(threadIdx.x * N) / (NBLOCK * NTHREAD);

for (i=off;i<off+n;i++)
{
a[i] = a[i] + b[i];

}
}

Mike Peardon (TCD) CUDAClub January 13, 2009 14 / 15

Example 2 - vector adder (2)

Call using

cudaMemcpy(gpu_a, host_a, sizeof(float) * n,
cudaMemcpyHostToDevice);

cudaMemcpy(gpu_b, host_b, sizeof(float) * n,
cudaMemcpyHostToDevice);

adder<<<NBLOCK, NTHREAD>>>(n / (NBLOCK * NTHREAD), gpu_a, gpu_b);

cudaMemcpy(host_c, gpu_a, sizeof(float) * n,
cudaMemcpyDeviceToHost);

Need the cudaMemcpy’s to push/pull the data on/off the GPU.

Mike Peardon (TCD) CUDAClub January 13, 2009 15 / 15

