Une intégrale

Soient m et n deux entiers naturels. Justifier l'existence de l'intégrale

$$I_{m,n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin\frac{(2m+1)t}{2}\sin\frac{(2n+1)t}{2}}{\left(\sin\frac{t}{2}\right)^2} dt$$

et la calculer.

Une développement

Soit a > 1. Développer $x \mapsto \frac{1}{a + \cos x}$ en série de Fourier.

Étude de convergence *

Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite réelle décroissant vers 0.

- 1. Montrer que la série de fonctions $\sum \lambda_n \sin(nx)$ converge simplement sur \mathbb{R} . Soit f sa limite simple, montrer que f est continue sur $]0, 2\pi[$.
- 2. Montrer que si $\lambda_n = o(1/n)$ quand $n \to +\infty$, alors $\sum \lambda_n \sin(nx)$ converge uniformément sur \mathbb{R} vers f.
- 3. Montrer que réciproquement, si $\sum \lambda_n \sin(nx)$ converge uniformément sur \mathbb{R} , alors $\lambda_n = o(1/n)$.
- 4. Plus généralement, montrer que les conditions suivantes sont équivalentes :
 - (i) $\lambda_n = o(1/n)$,
 - (ii) $\sum \lambda_n \sin(nx)$ converge uniformément sur \mathbb{R} ,
 - (iii) f est continue sur \mathbb{R} .

Phénomène de Gibbs

On désigne par f la fonction de \mathbb{R} dans \mathbb{R} 2π -périodique normalisée coïncidant avec l'identité sur $]0, 2\pi[$.

- 1. Calculer ses coefficients de Fourier $(c_n)_{n\in\mathbb{Z}}$ de f.
- 2. Étudier les extrema des sommes partielles $S_n: x \longmapsto \sum_{k=-n}^n c_k e^{ikx}$.
- 3. Soit m_n le premier minimum local de S_n sur $[0, 2\pi]$. Etudier la suite $(m_n)_{n\in\mathbb{N}}$. Sachant que $\int_0^\pi \frac{\sin x}{x} dx \approx 1.85$, donner une interprétation graphique et commenter.

Formule sommatoire de Poisson

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une application de classe \mathcal{C}^{∞} telle que, lorsque $|x| \to \infty$, $f(x) = O(1/x^2)$ et $f'(x) = O(1/x^2)$.

1. Pour tout entier relatif n, on pose

$$\widehat{f}(n) = \int_{-\infty}^{+\infty} f(t)e^{2i\pi nt}dt.$$

Démontrer la formule sommatoire de Poisson :

$$\forall x \in \mathbb{R}, \qquad \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2i\pi nx}.$$

2. On considère la fonction thêta de Jacobi

$$\Theta: \quad]0,1[\quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \sum_{n \in \mathbb{Z}} x^{n^2}.$$

Montrer l'identité $\forall s > 0$, $\sqrt{s} \Theta(e^{-s\pi}) = \Theta(e^{-\pi/s})$, et en déduire un équivalent de $\Theta(x)$ lorsque $x \to 1^-$.

Solutions périodiques d'une équation différentielle autonome

1. Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une application continue par morceaux et T-périodique. Montrer que

$$\iint_{[0,T]^2} |f(u) - f(v)|^2 du dv = 2 \sum_{n \in \mathbb{Z}^*} \left| \int_0^T f(x) e^{2i\pi nx/T} dx \right|^2.$$

2. Soit $f \colon \mathbb{R} \longrightarrow \mathbb{C}$ une application T-périodique de classe \mathcal{C}^1 . Montrer que

$$\iint_{[0,T]^2} |f'(u) - f'(v)|^2 du dv \geqslant \left(\frac{2\pi}{T}\right)^2 \iint_{[0,T]^2} |f(u) - f(v)|^2 du dv.$$

Quels sont les cas d'égalité?

3. Soit $F: \mathbb{R} \longrightarrow \mathbb{R}$ une application K-lipschitzienne. Montrer que si $\varphi \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ est une solution périodique non constante de l'équation différentielle autonome

$$\varphi'(t) = F(\varphi(t)),$$

alors le générateur positif T du groupe des périodes de φ ne peut être arbitrairement petit, et en expliciter un minorant.

Équation de la chaleur

Soit L > 0. On cherche à résoudre sur $[0, L] \times \mathbb{R}^+$ l'équation de la chaleur

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \qquad (x \in [0, L], t \in \mathbb{R}^+, T \in \mathcal{C}^1([0, L] \times \mathbb{R}^+))$$

avec les conditions au bord

$$\forall t \in \mathbb{R}^+, T(0,t) = T(L,t) = 0 \text{ et } \forall x \in [0,L], T(x,0) = T_0(x),$$

où T_0 est une application de classe \mathcal{C}^1 de [0, L] dans \mathbb{R} telle que $T_0(0) = T_0(L) = 0$.

- 1. On prolonge T_0 et les $T(\cdot,t)$ à [-L,L] par imparité, puis à \mathbb{R} par 2L-périodicité. Quelle est alors la régularité de T_0 ? Que peut-on en déduire?
- 2. On recherche une solution sous la forme

$$T(x,t) = \sum_{n \in \mathbb{Z}} b_n(t) \sin(2\pi x/L).$$

Commenter la logique de cette démarche, puis, en dérivant formellement, trouver une équation différentielle satisfaite par les $b_n(t)$, et la résoudre. Vérifer alors que la solution ainsi obtenue convient. Que peuton dire de sa régularité? Et de son passé (t < 0)?

3. On veut démontrer que cette solution est en fait la seule. Pour cela, montrer que si f est une fonction de classe \mathcal{C}^2 de $[0, L] \times [0, T]$ dans \mathbb{R} , telle que $\frac{\partial f}{\partial t} - \frac{\partial^2 f}{\partial x^2} < 0$, alors le maximum de f est atteint en un point de $\{t=0\} \cup \{x=0\} \cup \{x=L\}$, puis montrer que c'est encore le cas si on suppose seulement que $\frac{\partial f}{\partial t} - \frac{\partial^2 f}{\partial x^2} \leq 0$, et enfin conclure.

Théorème de Wiener *

On notera $(c_n(f))_{n\in\mathbb{Z}}$ les coefficients de Fourier de toute fonction continue et 2π -périodique $f:\mathbb{R}\longrightarrow\mathbb{C}$.

1. Soit $\mathcal{A} = \left\{ f \in \mathcal{C}^0_{2\pi}(\mathbb{R}, \mathbb{C}) \; \middle| \; \sum_{n \in \mathbb{Z}} |c_n(f)| < +\infty \right\}$ l'ensemble des fonctions continues et 2π -périodiques dont la série de Fourier converge normalement. On munit \mathcal{A} de $||f|| = \sum_{n \in \mathbb{Z}} |c_n(f)|$.

Montrer que \mathcal{A} est un \mathbb{C} -espace vectoriel, puis montrer que toute $f \in \mathcal{A}$ est somme de sa série de Fourier.

2. Montrer que $\|\cdot\|$ confère à $\mathcal A$ une structure de $\mathbb C$ -algèbre de Banach commutative.

Les questions 3., 4. et 5. suivantes sont valables pour une algèbre de Banach \mathcal{A} quelconque; seule la question 6. est une application à l'algèbre des séries de Fourier normalement convergentes.

- 3. On note Spec(A) l'ensemble des morphismes de \mathbb{C} -algèbres de A dans \mathbb{C} . Montrer que pour tout $\varphi \in Spec(A)$, $Ker \varphi$ est un idéal maximal de A.
- 4. Montrer que tout élément de Spec(A) est continu, de norme d'opérateur 1 exactement.
- 5. On admet que toute \mathbb{C} -algèbre de Banach commutative qui est un corps est isomorphe à \mathbb{C} , et on admet également que tout idéal propre (c'est-à-dire différent de \mathcal{A}) de \mathcal{A} est inclus dans un idéal maximal. Soit \mathfrak{M} un idéal maximal de \mathcal{A} , montrer qu'il existe un unique élément φ de $Spec(\mathcal{A})$ tel que $\mathfrak{M} = Ker \varphi$. En déduire que $a \in \mathcal{A}$ est inversible si et seulement si $\forall \varphi \in Spec(\mathcal{A}), \ \varphi(a) \neq 0$.
- 6. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$, 2π périodique, ne s'annulant pas et dont la série de Fourier converge normalement. Montrer que la série de Fourier de $\frac{1}{f}$ converge normalement.