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Exercise 1 An enigmatic group (100 pts)

As you were walking from one lecture to another, you found lying on the ground of
the Hamilton building a finite group G, consisting of 11 conjugacy classes denoted
by C1, C2, · · · , C11, as well as two (not necessarily irreducible) representations of G
whose characters are given by the following data:

Conj. class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Size 1 15 40 90 45 120 144 120 90 15 40
ϕ 6 2 0 0 2 2 1 1 0 −2 3
ψ 21 1 −3 −1 1 1 1 0 −1 −3 0

(the first line lists the conjugacy classes of G; the second line gives the sizes of these
conjugacy classes; the last two lines give the values of these two characters).

1. (1 pt) Which conjugacy class does the identity of G lie in?

2. (8 pt) Determine the degree of ϕ, and that of ψ.

3. (1 pt) Determine #G.

4. (30 pts) Is the representation of character ϕ irreducible? If not, determine
the shape of its decomposition into a direct sum of irreducible representations,
including the degree of each irreducible constituent.

Hint: Even though we don’t know who G is, there is one irreducible character
of G that you should be able to write down...

5. (30 pts) Prove that G admits an irreducible representation of degree 16. Write
down its character. Finally, give an element of C[G] which acts as a projector
onto the corresponding isotypical component.

6. (30 pts) Prove that G admits a representation of degree 25 which decomposes
into the direct sum of 4 pairwise non-isomorphic irreducible representations.
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Solution 1

1. Let 1G be the identity of G. Then g1Gg
−1 = gg−1 = 1G for all g ∈ G, so the

identity sits alone in its conjugacy class. Since C1 is the only conjugacy class
of size 1, it must be the conjugacy class of 1G.

2. The degree of a character is the value that it assumes on 1G (because the trace
of an identity matrix is the size of that matrix), so deg ϕ = ϕ(1G) = 6 and
degψ = ψ(1G) = 21 by the previous question.

3. Since conjugacy classes partition G, we have

#G = 1 + 15 + 40 + 90 + 45 + 120 + 144 + 120 + 90 + 15 + 40 = 720.

4. We compute that (ϕ |ϕ) = 1

#G

∑
g∈G

ϕ(g)ϕ(g) =
1

720

11∑
j=1

#Cj|ϕ(Cj)|2 = 2. As

(ϕ |ϕ) ̸= 1, this shows that this representation is not irreducible.

More precisely, if this representation decomposes as
⊕k

i=1 ρ
⊕ni
i with the ρi

irreducible and pairwise non-isomorphic, then
∑k

i=1 n
2
i = 2, whence k = 2 and

n1 = n2 = 1, which means that this representation is the direct sum of two
non-isomorphic irreducible subrepresentations.

Besides, we observe that (ϕ |1) = 1
720

∑11
j=1 #Cjϕ(Cj)1 = 1, so one of these

irreducible subrepresentations is the trivial representation 1, whose degree is
deg 1 = 1; therefore the other irreducible subrepresentation has degree deg ϕ−
deg 1 = 6− 1 = 5.

5. From now on, given a character χ, let us write ρχ for the representation of
character χ (this is legitimate since χ determines ρχ up to isomorphism).

We compute that (ψ |ψ) = 2, so ρψ decomposes into the direct sum of two
non-isomorphic subrepresentations by the same argument as in the previous
question. Using the fact that the degree 5 irreducible character found in the
previous question is ξ = ϕ− 1, we also observe that (ψ | ξ) = 1, so one of the
irreducible subrepresentations of ρψ is ρξ; therefore the decomposition of ρψ
is ρξ ⊕ ρη where η = ψ − ξ = ψ − ϕ + 1 is an irreducible character of degree
degψ − deg ξ = 21− 5 = 16.

The formula η = ψ − ϕ+ 1 allows us to write down the values of η:

Conj. class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

η 16 0 −2 0 0 0 1 0 0 0 −2

Finally, the projection onto the isotypical component of η is

deg η

#G

∑
g∈G

η(g)eg =
16

720

11∑
j=1

η(Cj)∑
g∈Cj

eg


=

1

45

(
16
∑
g∈C1

eg − 2
∑
g∈C3

eg + 1
∑
g∈C7

eg − 2
∑
g∈C11

eg

)

=
16

45
e1G − 2

45

∑
g∈C3

eg +
1

45

∑
g∈C7

eg −
2

45

∑
g∈C11

eg.
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6. We know that the character of the representation Hom(ρξ, ρξ) is ξξ = ξ2

as ξ = ϕ − 1 is real-valued. This character has degree deg ξ2 = ξ2(1G) =
ξ(1G)

2 = 52 = 25 (alternatively, the underlying space is the space of linear
transformations from the 5-dimensional underlying space of ρξ to itself, which
is isomorphic to the space of 5×5 matrices and has thus dimension 52). If this
representation decomposes as

⊕k
i=1 ρ

⊕ni
i with the ρi irreducible and pairwise

non-isomorphic, then
k∑
i=1

n2
i = (ξ2 | ξ2) = 4, so that either k = 4 and ni = 1

for all i, or k = 1 and n1 = 2. However, the latter case is impossible, as we
would have 25 = deg ξ2 = deg ρ⊕2

1 = 2deg ρ1, which is absurd since 25 is odd.

This is the only mandatory exercise, that you must submit before the
deadline. The following exercises are not mandatory; they are not worth
any points, and you do not have to submit them. However, I strongly
recommend you try to solve them for practice, and you are welcome to
email me if you have questions about them. The solutions will be made
available with the solution to the mandatory exercise.
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Exercise 2 Decomposition of permutation representations

Let G be a finite group acting on a finite set X having at least two elements, and
let g ∈ G, x ∈ X. We make the following definitions:

• The orbit of x is G · x = {h · x, h ∈ G} ⊆ X.

• The fixed set of g is Fix g = {x ∈ X | g · x = x} ⊆ X.

Observe that the orbits form a partition (= disjoint union) of X. In this exercise,
we admit Burnside’s formula, which states that the number of orbits is

1

#G

∑
g∈G

#Fix g.

We say that the action of G on X is transitive if there is only one orbit, i.e. if
for all x, y ∈ X there exists g ∈ G such that g · x = y. We say that it is doubly
transitive if for all x, x′, y, y′ ∈ X such that x ̸= x′ and y ̸= y′, there exists g ∈ G
which achieves simultaneously g · x = y and g · x′ = y′ (the conditions x ̸= x′ and
y ̸= y′ are there because this obviously would not be possible if x = x′ but y ̸= y′).

Finally, let π be the permutation representation corresponding to G ⟳ X. Recall
that its character is given by χπ(g) = #Fix g for all g ∈ G.

1. Prove that there exists a representation ρ of G such that π ≃ 1⊕ ρ.

2. Prove that ρ has no subrepresentation isomorphic to 1 iff. the action of G on
X is transitive.

3. Suppose that the action of G on X is transitive. Prove that ρ is irreducible
iff. the action of G on X is actually doubly transitive.

Hint: It may help to define an action of G on the set X×X of (ordered) pairs
of elements of X by the formula g · (x, y) = (g · x, g · y). Note that this action
cannot be transitive, since the diagonal

∆ = {(x, x) | x ∈ X} ⊊ X ×X

is clearly stable under G.

Solution 2

1. We have

(χπ |1) =
1

#G

∑
g∈G

χπ(g)1(g) =
1

#G

∑
g∈G

#Fix g > 0,

so π contains at least one copy of 1. The existence of ρ follows from Maschke.

Remark: Since G permutes the points of X, the vector
∑

x∈X ex ∈ C[X] is
clearly fixed by every element of G. It therefore spans a one-dimensional sub-
space of C[X] which is a copy of 1. Pointing this out was anohter way to
answer this question.
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2. Let χρ be the character of ρ; it is given by χρ = χπ − 1. Thus

(χρ |1) = (χπ − 1 |1) = (χπ |1)− (1 |1) = −1 +
1

#G

∑
g∈G

#Fix g

by the previous question and because 1 is irreducible (degree 1). By the first
question, this is 1 less than the number of orbits. We conculde that if the
action is transitive, then there is only one orbit, so (χρ |1) = 0, so ρ does not
contain any copy of 1; and conversely, if the action is not transitive, then there
are at least two orbits, so (χρ |1) > 0, so ρ contains at least a copy of 1.

Remark: For each orbit o ⊆ X, the vector fo =
∑

x∈o ex ∈ C[X] is fixed
by every element of G, since o is closed under the action of G by definition
of an orbit. We therefore get one copy of 1 in π per orbit o; this is another
way to answer one direction of the question. The converse direction can also be
attacked with the same idea: each copy of 1 is a one-dimensional space spanned
by a vector which is fixed by every element of G, so we have a bijection between
copies of 1 in π and nonzero fixed vectors up to scaling. Since an element g ∈ G
turns a generic vector

∑
x∈X λxex ∈ C[X] into

∑
x∈X λxeg·x =

∑
x∈X λg−1·xex,

such a vector is fixed by g iff. λg−1·x = λx for all x ∈ X. As a result, this
vector is fixed by every element of G if and only if λx is constant on each
orbit, which is equivalent to this vector being a linear combination of the fo.
Therefore the maximal number of copies of 1 in a direct sum decomposition π
is the number of orbits (or, if you prefer, the isotypical component for 1 of π
is exactly the span of the fo), so the multiplicity of 1 in π is the number of
orbits. This is essentially the same idea as the determination of the centre of
the group algebra C[G] in chapter 4.

3. First of all, ρ is irreducible iff. (χρ |χρ) = 1.

By sesquilinearity of the dot product,

(χρ |χρ) = (χπ − 1 |χπ − 1) = (χπ |χπ)− (χπ |1)− (1 |χπ) + (1 |1)

=
1

#G

∑
g∈G

|#Fix g|2 − 2(χπ |1) + 1 = −1 +
1

#G

∑
g∈G

(#Fix g)2

since (1 |χπ) = (χπ |1) = 1 = 1 as G acts transitively on X, and as (1 |1) = 1
by irreducibility of 1.

Consider now the action of G on X × X suggested in the hint. An element
g ∈ G fixes a pair (x, y) ∈ X×X iff. g fixes both x and y, whence FixX×X g =
FixX g×FixX g. Therefore, the value at g of the character ψ of the permutation
representation attached to G ⟳ X ×X is

ψ(g) = #FixX×X g = #(FixX g × FixX g) = χπ(g)
2;

therefore (χρ |χρ) is the number of orbits ofG onX×X minus 1. In conclusion,
if G acts doubly transitively, then there are exactly two orbits on X × X,
namely the diagonal and its complement, so (χρ |χρ) = 1 and ρ is irreducible;
conversely, if G does not act doubly transitively, then there are more than two
orbits on X ×X, so (χρ |χρ) > 1 and ρ is not irreducible.
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Remark: This implies in particular that for all n ≥ 2 (resp. n ≥ 4), the
symmetric group Sn (resp. the alternating group An) has an easy-to-compute
irreducible character of degree n− 1.

Unlike the previous questions, I do not think that there is a way to solve this
question without relying on inner products.

For the sake of completeness, here is a proof of Burnside’s formula: Observe
that for each x ∈ X, the map

G −→ G · x
g 7−→ g · x

is #Sx-to-one, so that #G ·x = #G/#Sx (orbit-stabiliser formula). Consider
the function

f : G×X −→ {0, 1}

(g, x) 7−→
{

1, if g · x = x
0, if g · x ̸= x,

then we have that

1

#G

∑
g∈G

#Fix g =
1

#G

∑
g∈G

∑
x∈X

f(g, x) =
1

#G

∑
x∈X

∑
g∈G

f(g, x) =
1

#G

∑
x∈X

#Sx =
∑
x∈X

#Sx
#G

=
∑
x∈X

1

#(G · x)
=
∑
o orbit

∑
x∈o

1

#(G · x)
=
∑
o orbit

∑
x∈o

1

#o
=
∑
o orbit

#o
1

#o
=
∑
o orbit

1

is the number of orbits. We can also get an alternative, group-representation
proof of this formula by combining the two approaches to the second question!

Exercise 3 Schur vs. class functions

Let G be a finite group, let f : G −→ C be a class function (but not necessarily
a character), and let ρ : G −→ GL(V ) be an irreducible representation of G of
character χ.

Finally, let Tf =
∑

g∈G f(g)ρ(g) : V −→ V .

1. Explain why Tf = λ IdV for some λ ∈ C.

2. Express λ in terms of deg ρ and of an inner product of class functions.

Solution 3

1. Tf is the action of the element
∑

g∈G f(g)eg of C[G] on the C[G]-module V .
Since f is a class function, this element actually lies in the centre of C[G], so
Tf is a morphism of C[G] modules, i.e. Tf ∈ EndG(V ) (as opposed to merely
End(V )).

But V is irreducible by assumption, so EndG(V ) = {λ IdV | λ ∈ C} by Schur’s
lemma.
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2. We compare traces.

On the one hand, TrTf = Trλ IdV = λ dimV = λ deg ρ.

On the other hand, TrTf =
∑

g∈G f(g) Tr ρ(g) =
∑

g∈G f(g)χ(g) by limearity

of the trace, and we can reexpress this as #G 1
#G

∑
g∈G f(g)χ(g) = #G(f |χ)

(or alternatively #G(χ|f) if you chose to hit f instead of χ with complex conju-
gation; that’s the same thing since the inner product is conjugate-symmetric).

Therefore

λ =
#G

deg ρ
(f |χ).
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